Interactive task training of a mobile robot through human gesture recognition

This paper describes a demonstration-based programming system in which a mobile robot observes the actions of a human performing a multi-step task. From these observations, the robot determines which of its pre-learned capabilities are required to replicate the task and in what sequence they must be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rybski, P.E., Voyles, R.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669 vol.1
container_issue
container_start_page 664
container_title
container_volume 1
creator Rybski, P.E.
Voyles, R.M.
description This paper describes a demonstration-based programming system in which a mobile robot observes the actions of a human performing a multi-step task. From these observations, the robot determines which of its pre-learned capabilities are required to replicate the task and in what sequence they must be ordered. The focus of this paper is on the hidden Markov model method used to learn and classify the actions as "gestures". A preliminary system demonstration is also described in which the robot observes the human performing a block distribution task. During the demonstration, the robot actively follows the demonstrator to maintain its vantage point and to infer spatial relationships.
doi_str_mv 10.1109/ROBOT.1999.770051
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_770051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>770051</ieee_id><sourcerecordid>27046801</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b4a10eb2b9f55a159004cbb8474fbb2a167cdf9ce19f2f82e1b23361cebcbf8b3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMfYK39AXrKydvW981-JDmq-FGoFKSCtyWJyTa6u6nZrOC_d6HCwBzmYRiGkEuEJSLIm9fN3Wa7RCnlknOAEo_IjJWcZyD4-zFZSC5gUl6igOqEzBBKyArO5Bk5H4ZPAMjzqpqRl1WfbFQm-R9Lkxq-aIrK975vaHBU0S5o31oagw6Jpl0MY7Oju7FTPW3skMY4ZdaEpvfJh_6CnDrVDnbx73Py9viwvX_O1pun1f3tOvOIImW6UAhWMy1dWSosJUBhtBYFL5zWTGHFzYeTxqJ0zAlmUbNpLhqrjXZC53Nyfejdx_A9Tjvqzg_Gtq3qbRiHmnEoKgE4gVcH0Ftr6330nYq_9eGx_A99hl8p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27046801</pqid></control><display><type>conference_proceeding</type><title>Interactive task training of a mobile robot through human gesture recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rybski, P.E. ; Voyles, R.M.</creator><creatorcontrib>Rybski, P.E. ; Voyles, R.M.</creatorcontrib><description>This paper describes a demonstration-based programming system in which a mobile robot observes the actions of a human performing a multi-step task. From these observations, the robot determines which of its pre-learned capabilities are required to replicate the task and in what sequence they must be ordered. The focus of this paper is on the hidden Markov model method used to learn and classify the actions as "gestures". A preliminary system demonstration is also described in which the robot observes the human performing a block distribution task. During the demonstration, the robot actively follows the demonstrator to maintain its vantage point and to infer spatial relationships.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9780780351806</identifier><identifier>ISBN: 0780351800</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.1999.770051</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Hidden Markov models ; Humans ; Mobile robots ; Path planning ; Performance analysis ; Power system modeling ; Robot programming ; Robot vision systems ; Stereo vision</subject><ispartof>Proceedings - IEEE International Conference on Robotics and Automation, 1999, Vol.1, p.664-669 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/770051$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/770051$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rybski, P.E.</creatorcontrib><creatorcontrib>Voyles, R.M.</creatorcontrib><title>Interactive task training of a mobile robot through human gesture recognition</title><title>Proceedings - IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>This paper describes a demonstration-based programming system in which a mobile robot observes the actions of a human performing a multi-step task. From these observations, the robot determines which of its pre-learned capabilities are required to replicate the task and in what sequence they must be ordered. The focus of this paper is on the hidden Markov model method used to learn and classify the actions as "gestures". A preliminary system demonstration is also described in which the robot observes the human performing a block distribution task. During the demonstration, the robot actively follows the demonstrator to maintain its vantage point and to infer spatial relationships.</description><subject>Computer science</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Mobile robots</subject><subject>Path planning</subject><subject>Performance analysis</subject><subject>Power system modeling</subject><subject>Robot programming</subject><subject>Robot vision systems</subject><subject>Stereo vision</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9780780351806</isbn><isbn>0780351800</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhIMfYK39AXrKydvW981-JDmq-FGoFKSCtyWJyTa6u6nZrOC_d6HCwBzmYRiGkEuEJSLIm9fN3Wa7RCnlknOAEo_IjJWcZyD4-zFZSC5gUl6igOqEzBBKyArO5Bk5H4ZPAMjzqpqRl1WfbFQm-R9Lkxq-aIrK975vaHBU0S5o31oagw6Jpl0MY7Oju7FTPW3skMY4ZdaEpvfJh_6CnDrVDnbx73Py9viwvX_O1pun1f3tOvOIImW6UAhWMy1dWSosJUBhtBYFL5zWTGHFzYeTxqJ0zAlmUbNpLhqrjXZC53Nyfejdx_A9Tjvqzg_Gtq3qbRiHmnEoKgE4gVcH0Ftr6330nYq_9eGx_A99hl8p</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Rybski, P.E.</creator><creator>Voyles, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1999</creationdate><title>Interactive task training of a mobile robot through human gesture recognition</title><author>Rybski, P.E. ; Voyles, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b4a10eb2b9f55a159004cbb8474fbb2a167cdf9ce19f2f82e1b23361cebcbf8b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer science</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Mobile robots</topic><topic>Path planning</topic><topic>Performance analysis</topic><topic>Power system modeling</topic><topic>Robot programming</topic><topic>Robot vision systems</topic><topic>Stereo vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Rybski, P.E.</creatorcontrib><creatorcontrib>Voyles, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rybski, P.E.</au><au>Voyles, R.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Interactive task training of a mobile robot through human gesture recognition</atitle><btitle>Proceedings - IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>664</spage><epage>669 vol.1</epage><pages>664-669 vol.1</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9780780351806</isbn><isbn>0780351800</isbn><abstract>This paper describes a demonstration-based programming system in which a mobile robot observes the actions of a human performing a multi-step task. From these observations, the robot determines which of its pre-learned capabilities are required to replicate the task and in what sequence they must be ordered. The focus of this paper is on the hidden Markov model method used to learn and classify the actions as "gestures". A preliminary system demonstration is also described in which the robot observes the human performing a block distribution task. During the demonstration, the robot actively follows the demonstrator to maintain its vantage point and to infer spatial relationships.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.1999.770051</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings - IEEE International Conference on Robotics and Automation, 1999, Vol.1, p.664-669 vol.1
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_770051
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Hidden Markov models
Humans
Mobile robots
Path planning
Performance analysis
Power system modeling
Robot programming
Robot vision systems
Stereo vision
title Interactive task training of a mobile robot through human gesture recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Interactive%20task%20training%20of%20a%20mobile%20robot%20through%20human%20gesture%20recognition&rft.btitle=Proceedings%20-%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Rybski,%20P.E.&rft.date=1999&rft.volume=1&rft.spage=664&rft.epage=669%20vol.1&rft.pages=664-669%20vol.1&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9780780351806&rft.isbn_list=0780351800&rft_id=info:doi/10.1109/ROBOT.1999.770051&rft_dat=%3Cproquest_6IE%3E27046801%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27046801&rft_id=info:pmid/&rft_ieee_id=770051&rfr_iscdi=true