Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs

Commercialization of 1200-V silicon carbide (SiC) MOSFET has enabled power electronic design with improved efficiency as well as increased power density. High-voltage spikes induced in applications such as solenoid control, solid-state transformer, boost converter, and flyback converter can drive th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2017-08, Vol.32 (8), p.6405-6415
Hauptverfasser: Kelley, Mitchell D., Pushpakaran, Bejoy N., Bayne, Stephen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6415
container_issue 8
container_start_page 6405
container_title IEEE transactions on power electronics
container_volume 32
creator Kelley, Mitchell D.
Pushpakaran, Bejoy N.
Bayne, Stephen B.
description Commercialization of 1200-V silicon carbide (SiC) MOSFET has enabled power electronic design with improved efficiency as well as increased power density. High-voltage spikes induced in applications such as solenoid control, solid-state transformer, boost converter, and flyback converter can drive the MOSFET into avalanche mode operation due to high di/dt coupled with parasitic inductance. Avalanche mode operation is characterized by high-power dissipation within the device due to the high voltage and current crossover. This study focuses on the evaluation of two commercially available SiC MOSFETs from different manufacturers, each rated for 1200 V with an ON-state resistance of 80 mΩ, during unclamped inductive switching (UIS) mode operation. To determine device reliability, a decoupled UIS testbed was developed to evaluate the avalanche energy robustness at 22 °C and 125 °C during two specific conditions: high current and low energy, and low current and high energy. The SiC MOSFETs were evaluated using a load inductance of 1.42, 5.1, 10.5, and 15.8 mH to understand the effect of current and avalanche energy on device failure. To correlate the experimental results with the failure mechanism, estimated junction temperature and static device characteristics are presented; additionally, MOSFETs were decapsulated to examine the failure sites on the semiconductor die.
doi_str_mv 10.1109/TPEL.2016.2621099
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7676377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7676377</ieee_id><sourcerecordid>10_1109_TPEL_2016_2621099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-db2f1023deeb7c56ec3cc4d7bbfa440c75c3c1d092e572a1b0538df90e01e6753</originalsourceid><addsrcrecordid>eNo9kMFKw0AURQdRMFY_QNzMD6R9byaTySxLqFZobTHVbZhMXjSSNJJpBT_Jn_GbTGlxdeFw710cxm4RxohgJpv1bDEWgPFYxGIA5owFaCIMAUGfswCSRIWJMfKSXXn_AYCRAgzYU1Zv3xoK1_vGE59-2cZu3TvxZVcSf-6Kvd9tyXveVTzt2pZ6V9uGowDgr5MEePv7w7M65ctVdj_b-Gt2Udnh6eaUI_Yy4HQeLlYPj-l0ETqJcheWhagQhCyJCu1UTE46F5W6KCobReC0GgCWYAQpLSwWoGRSVgYIkGKt5Ijh8df1nfc9VflnX7e2_84R8oOQ_CAkPwjJT0KGzd1xUxPRf1_HOpZayz-7A1tO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Kelley, Mitchell D. ; Pushpakaran, Bejoy N. ; Bayne, Stephen B.</creator><creatorcontrib>Kelley, Mitchell D. ; Pushpakaran, Bejoy N. ; Bayne, Stephen B.</creatorcontrib><description>Commercialization of 1200-V silicon carbide (SiC) MOSFET has enabled power electronic design with improved efficiency as well as increased power density. High-voltage spikes induced in applications such as solenoid control, solid-state transformer, boost converter, and flyback converter can drive the MOSFET into avalanche mode operation due to high di/dt coupled with parasitic inductance. Avalanche mode operation is characterized by high-power dissipation within the device due to the high voltage and current crossover. This study focuses on the evaluation of two commercially available SiC MOSFETs from different manufacturers, each rated for 1200 V with an ON-state resistance of 80 mΩ, during unclamped inductive switching (UIS) mode operation. To determine device reliability, a decoupled UIS testbed was developed to evaluate the avalanche energy robustness at 22 °C and 125 °C during two specific conditions: high current and low energy, and low current and high energy. The SiC MOSFETs were evaluated using a load inductance of 1.42, 5.1, 10.5, and 15.8 mH to understand the effect of current and avalanche energy on device failure. To correlate the experimental results with the failure mechanism, estimated junction temperature and static device characteristics are presented; additionally, MOSFETs were decapsulated to examine the failure sites on the semiconductor die.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2016.2621099</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Avalanche breakdown ; Current measurement ; failure analysis ; Inductance ; Inductors ; MOSFET ; MOSFETs ; power semiconductor devices ; semiconductor device reliability ; Silicon carbide ; silicon carbide (SiC) ; Switches ; unclamped inductive switching (UIS) ; Voltage measurement</subject><ispartof>IEEE transactions on power electronics, 2017-08, Vol.32 (8), p.6405-6415</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-db2f1023deeb7c56ec3cc4d7bbfa440c75c3c1d092e572a1b0538df90e01e6753</citedby><cites>FETCH-LOGICAL-c313t-db2f1023deeb7c56ec3cc4d7bbfa440c75c3c1d092e572a1b0538df90e01e6753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7676377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7676377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kelley, Mitchell D.</creatorcontrib><creatorcontrib>Pushpakaran, Bejoy N.</creatorcontrib><creatorcontrib>Bayne, Stephen B.</creatorcontrib><title>Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Commercialization of 1200-V silicon carbide (SiC) MOSFET has enabled power electronic design with improved efficiency as well as increased power density. High-voltage spikes induced in applications such as solenoid control, solid-state transformer, boost converter, and flyback converter can drive the MOSFET into avalanche mode operation due to high di/dt coupled with parasitic inductance. Avalanche mode operation is characterized by high-power dissipation within the device due to the high voltage and current crossover. This study focuses on the evaluation of two commercially available SiC MOSFETs from different manufacturers, each rated for 1200 V with an ON-state resistance of 80 mΩ, during unclamped inductive switching (UIS) mode operation. To determine device reliability, a decoupled UIS testbed was developed to evaluate the avalanche energy robustness at 22 °C and 125 °C during two specific conditions: high current and low energy, and low current and high energy. The SiC MOSFETs were evaluated using a load inductance of 1.42, 5.1, 10.5, and 15.8 mH to understand the effect of current and avalanche energy on device failure. To correlate the experimental results with the failure mechanism, estimated junction temperature and static device characteristics are presented; additionally, MOSFETs were decapsulated to examine the failure sites on the semiconductor die.</description><subject>Avalanche breakdown</subject><subject>Current measurement</subject><subject>failure analysis</subject><subject>Inductance</subject><subject>Inductors</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>power semiconductor devices</subject><subject>semiconductor device reliability</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>Switches</subject><subject>unclamped inductive switching (UIS)</subject><subject>Voltage measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AURQdRMFY_QNzMD6R9byaTySxLqFZobTHVbZhMXjSSNJJpBT_Jn_GbTGlxdeFw710cxm4RxohgJpv1bDEWgPFYxGIA5owFaCIMAUGfswCSRIWJMfKSXXn_AYCRAgzYU1Zv3xoK1_vGE59-2cZu3TvxZVcSf-6Kvd9tyXveVTzt2pZ6V9uGowDgr5MEePv7w7M65ctVdj_b-Gt2Udnh6eaUI_Yy4HQeLlYPj-l0ETqJcheWhagQhCyJCu1UTE46F5W6KCobReC0GgCWYAQpLSwWoGRSVgYIkGKt5Ijh8df1nfc9VflnX7e2_84R8oOQ_CAkPwjJT0KGzd1xUxPRf1_HOpZayz-7A1tO</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kelley, Mitchell D.</creator><creator>Pushpakaran, Bejoy N.</creator><creator>Bayne, Stephen B.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs</title><author>Kelley, Mitchell D. ; Pushpakaran, Bejoy N. ; Bayne, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-db2f1023deeb7c56ec3cc4d7bbfa440c75c3c1d092e572a1b0538df90e01e6753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Avalanche breakdown</topic><topic>Current measurement</topic><topic>failure analysis</topic><topic>Inductance</topic><topic>Inductors</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>power semiconductor devices</topic><topic>semiconductor device reliability</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>Switches</topic><topic>unclamped inductive switching (UIS)</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelley, Mitchell D.</creatorcontrib><creatorcontrib>Pushpakaran, Bejoy N.</creatorcontrib><creatorcontrib>Bayne, Stephen B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kelley, Mitchell D.</au><au>Pushpakaran, Bejoy N.</au><au>Bayne, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2017-08</date><risdate>2017</risdate><volume>32</volume><issue>8</issue><spage>6405</spage><epage>6415</epage><pages>6405-6415</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Commercialization of 1200-V silicon carbide (SiC) MOSFET has enabled power electronic design with improved efficiency as well as increased power density. High-voltage spikes induced in applications such as solenoid control, solid-state transformer, boost converter, and flyback converter can drive the MOSFET into avalanche mode operation due to high di/dt coupled with parasitic inductance. Avalanche mode operation is characterized by high-power dissipation within the device due to the high voltage and current crossover. This study focuses on the evaluation of two commercially available SiC MOSFETs from different manufacturers, each rated for 1200 V with an ON-state resistance of 80 mΩ, during unclamped inductive switching (UIS) mode operation. To determine device reliability, a decoupled UIS testbed was developed to evaluate the avalanche energy robustness at 22 °C and 125 °C during two specific conditions: high current and low energy, and low current and high energy. The SiC MOSFETs were evaluated using a load inductance of 1.42, 5.1, 10.5, and 15.8 mH to understand the effect of current and avalanche energy on device failure. To correlate the experimental results with the failure mechanism, estimated junction temperature and static device characteristics are presented; additionally, MOSFETs were decapsulated to examine the failure sites on the semiconductor die.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2016.2621099</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2017-08, Vol.32 (8), p.6405-6415
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_7676377
source IEEE Electronic Library (IEL)
subjects Avalanche breakdown
Current measurement
failure analysis
Inductance
Inductors
MOSFET
MOSFETs
power semiconductor devices
semiconductor device reliability
Silicon carbide
silicon carbide (SiC)
Switches
unclamped inductive switching (UIS)
Voltage measurement
title Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Pulse%20Avalanche%20Mode%20Robustness%20of%20Commercial%201200%20V/80%20m%CE%A9%20SiC%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Kelley,%20Mitchell%20D.&rft.date=2017-08&rft.volume=32&rft.issue=8&rft.spage=6405&rft.epage=6415&rft.pages=6405-6415&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2016.2621099&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2016_2621099%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7676377&rfr_iscdi=true