Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials

The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1999-05, Vol.35 (3), p.1801-1804
Hauptverfasser: Papadopoulou, F.A., Panas, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1804
container_issue 3
container_start_page 1801
container_title IEEE transactions on magnetics
container_volume 35
creator Papadopoulou, F.A.
Panas, S.M.
description The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.
doi_str_mv 10.1109/20.767381
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_767381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>767381</ieee_id><sourcerecordid>919912240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1UJLZbDlx7ygG16iEwYzuxfaxWUJCQeoFz5DgTcJWNQ-ystP--gazorXt6mnnfe5fH2AXCFSKYaw5XqlRC4wlboZGYA5TmE1sBoM6NLOUZ-xzjn_mUBcKKtTcx-a1NPvRZaLP0QllP444yF_pmcu__HXXB-bTPGh_T6Ovp_Vvvs4Go8_1zFu126KiZM9shTH2T2SU4hER98raLX9hpOwudH3TNnm5vHjd3-cPvX_ebnw-5kwApb4Ry1lk0hbPGqaZs9WxIC-RESaCbttDEwcqiEby2wnDFZS21qkuDLYJYs-9L7zCG14liqrY-Ouo621OYYmXQGORcvpHf_ktyXfLCaDwOKiyE5Oo4iEILVOUM_lhAN4YYR2qrYZw3GPcVQvW2YsWhWlac2ctDqY3Odu1oe-fjv4AWBsDM2NcF80T04R46_gINcKUT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21383176</pqid></control><display><type>article</type><title>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</title><source>IEEE Electronic Library (IEL)</source><creator>Papadopoulou, F.A. ; Panas, S.M.</creator><creatorcontrib>Papadopoulou, F.A. ; Panas, S.M.</creatorcontrib><description>The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.767381</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Biological and medical sciences ; Biomedical engineering ; Biomedical equipment ; Boundary conditions ; Conductivity ; Convolution ; Deconvolution ; Delay ; Delay estimation ; Electromagnetic fields ; Electrophysiology ; Estimation ; Fibers ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Inverse problems ; Laplace equations ; Nerve fibers ; Nerves ; Nervous system ; Neurology ; Neuroscience ; Peeling ; Propagation delay ; Signal detection ; Velocity distribution ; Vertebrates: nervous system and sense organs ; Wave propagation ; Wavelet</subject><ispartof>IEEE transactions on magnetics, 1999-05, Vol.35 (3), p.1801-1804</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</citedby><cites>FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/767381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/767381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1839009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadopoulou, F.A.</creatorcontrib><creatorcontrib>Panas, S.M.</creatorcontrib><title>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical equipment</subject><subject>Boundary conditions</subject><subject>Conductivity</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Delay</subject><subject>Delay estimation</subject><subject>Electromagnetic fields</subject><subject>Electrophysiology</subject><subject>Estimation</subject><subject>Fibers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Inverse problems</subject><subject>Laplace equations</subject><subject>Nerve fibers</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neuroscience</subject><subject>Peeling</subject><subject>Propagation delay</subject><subject>Signal detection</subject><subject>Velocity distribution</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Wave propagation</subject><subject>Wavelet</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFP3DAQhS1UJLZbDlx7ygG16iEwYzuxfaxWUJCQeoFz5DgTcJWNQ-ystP--gazorXt6mnnfe5fH2AXCFSKYaw5XqlRC4wlboZGYA5TmE1sBoM6NLOUZ-xzjn_mUBcKKtTcx-a1NPvRZaLP0QllP444yF_pmcu__HXXB-bTPGh_T6Ovp_Vvvs4Go8_1zFu126KiZM9shTH2T2SU4hER98raLX9hpOwudH3TNnm5vHjd3-cPvX_ebnw-5kwApb4Ry1lk0hbPGqaZs9WxIC-RESaCbttDEwcqiEby2wnDFZS21qkuDLYJYs-9L7zCG14liqrY-Ouo621OYYmXQGORcvpHf_ktyXfLCaDwOKiyE5Oo4iEILVOUM_lhAN4YYR2qrYZw3GPcVQvW2YsWhWlac2ctDqY3Odu1oe-fjv4AWBsDM2NcF80T04R46_gINcKUT</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Papadopoulou, F.A.</creator><creator>Panas, S.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>19990501</creationdate><title>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</title><author>Papadopoulou, F.A. ; Panas, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical equipment</topic><topic>Boundary conditions</topic><topic>Conductivity</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Delay</topic><topic>Delay estimation</topic><topic>Electromagnetic fields</topic><topic>Electrophysiology</topic><topic>Estimation</topic><topic>Fibers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Inverse problems</topic><topic>Laplace equations</topic><topic>Nerve fibers</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neuroscience</topic><topic>Peeling</topic><topic>Propagation delay</topic><topic>Signal detection</topic><topic>Velocity distribution</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Wave propagation</topic><topic>Wavelet</topic><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulou, F.A.</creatorcontrib><creatorcontrib>Panas, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Papadopoulou, F.A.</au><au>Panas, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>35</volume><issue>3</issue><spage>1801</spage><epage>1804</epage><pages>1801-1804</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.767381</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1999-05, Vol.35 (3), p.1801-1804
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_767381
source IEEE Electronic Library (IEL)
subjects Algorithms
Biological and medical sciences
Biomedical engineering
Biomedical equipment
Boundary conditions
Conductivity
Convolution
Deconvolution
Delay
Delay estimation
Electromagnetic fields
Electrophysiology
Estimation
Fibers
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Inverse problems
Laplace equations
Nerve fibers
Nerves
Nervous system
Neurology
Neuroscience
Peeling
Propagation delay
Signal detection
Velocity distribution
Vertebrates: nervous system and sense organs
Wave propagation
Wavelet
title Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20nerve%20conduction%20velocity%20distribution%20by%20peeling%20sampled%20compound%20action%20potentials&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Papadopoulou,%20F.A.&rft.date=1999-05-01&rft.volume=35&rft.issue=3&rft.spage=1801&rft.epage=1804&rft.pages=1801-1804&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.767381&rft_dat=%3Cproquest_RIE%3E919912240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21383176&rft_id=info:pmid/&rft_ieee_id=767381&rfr_iscdi=true