Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials
The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fib...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1999-05, Vol.35 (3), p.1801-1804 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1804 |
---|---|
container_issue | 3 |
container_start_page | 1801 |
container_title | IEEE transactions on magnetics |
container_volume | 35 |
creator | Papadopoulou, F.A. Panas, S.M. |
description | The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities. |
doi_str_mv | 10.1109/20.767381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_767381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>767381</ieee_id><sourcerecordid>919912240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1UJLZbDlx7ygG16iEwYzuxfaxWUJCQeoFz5DgTcJWNQ-ystP--gazorXt6mnnfe5fH2AXCFSKYaw5XqlRC4wlboZGYA5TmE1sBoM6NLOUZ-xzjn_mUBcKKtTcx-a1NPvRZaLP0QllP444yF_pmcu__HXXB-bTPGh_T6Ovp_Vvvs4Go8_1zFu126KiZM9shTH2T2SU4hER98raLX9hpOwudH3TNnm5vHjd3-cPvX_ebnw-5kwApb4Ry1lk0hbPGqaZs9WxIC-RESaCbttDEwcqiEby2wnDFZS21qkuDLYJYs-9L7zCG14liqrY-Ouo621OYYmXQGORcvpHf_ktyXfLCaDwOKiyE5Oo4iEILVOUM_lhAN4YYR2qrYZw3GPcVQvW2YsWhWlac2ctDqY3Odu1oe-fjv4AWBsDM2NcF80T04R46_gINcKUT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21383176</pqid></control><display><type>article</type><title>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</title><source>IEEE Electronic Library (IEL)</source><creator>Papadopoulou, F.A. ; Panas, S.M.</creator><creatorcontrib>Papadopoulou, F.A. ; Panas, S.M.</creatorcontrib><description>The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.767381</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Biological and medical sciences ; Biomedical engineering ; Biomedical equipment ; Boundary conditions ; Conductivity ; Convolution ; Deconvolution ; Delay ; Delay estimation ; Electromagnetic fields ; Electrophysiology ; Estimation ; Fibers ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Inverse problems ; Laplace equations ; Nerve fibers ; Nerves ; Nervous system ; Neurology ; Neuroscience ; Peeling ; Propagation delay ; Signal detection ; Velocity distribution ; Vertebrates: nervous system and sense organs ; Wave propagation ; Wavelet</subject><ispartof>IEEE transactions on magnetics, 1999-05, Vol.35 (3), p.1801-1804</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</citedby><cites>FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/767381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/767381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1839009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadopoulou, F.A.</creatorcontrib><creatorcontrib>Panas, S.M.</creatorcontrib><title>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical equipment</subject><subject>Boundary conditions</subject><subject>Conductivity</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Delay</subject><subject>Delay estimation</subject><subject>Electromagnetic fields</subject><subject>Electrophysiology</subject><subject>Estimation</subject><subject>Fibers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Inverse problems</subject><subject>Laplace equations</subject><subject>Nerve fibers</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Neurology</subject><subject>Neuroscience</subject><subject>Peeling</subject><subject>Propagation delay</subject><subject>Signal detection</subject><subject>Velocity distribution</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Wave propagation</subject><subject>Wavelet</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFP3DAQhS1UJLZbDlx7ygG16iEwYzuxfaxWUJCQeoFz5DgTcJWNQ-ystP--gazorXt6mnnfe5fH2AXCFSKYaw5XqlRC4wlboZGYA5TmE1sBoM6NLOUZ-xzjn_mUBcKKtTcx-a1NPvRZaLP0QllP444yF_pmcu__HXXB-bTPGh_T6Ovp_Vvvs4Go8_1zFu126KiZM9shTH2T2SU4hER98raLX9hpOwudH3TNnm5vHjd3-cPvX_ebnw-5kwApb4Ry1lk0hbPGqaZs9WxIC-RESaCbttDEwcqiEby2wnDFZS21qkuDLYJYs-9L7zCG14liqrY-Ouo621OYYmXQGORcvpHf_ktyXfLCaDwOKiyE5Oo4iEILVOUM_lhAN4YYR2qrYZw3GPcVQvW2YsWhWlac2ctDqY3Odu1oe-fjv4AWBsDM2NcF80T04R46_gINcKUT</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Papadopoulou, F.A.</creator><creator>Panas, S.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>19990501</creationdate><title>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</title><author>Papadopoulou, F.A. ; Panas, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d37caca195ca9c7d6f8c404a0ec36e08df58e20a45d32ba392724b487b691f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical equipment</topic><topic>Boundary conditions</topic><topic>Conductivity</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Delay</topic><topic>Delay estimation</topic><topic>Electromagnetic fields</topic><topic>Electrophysiology</topic><topic>Estimation</topic><topic>Fibers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Inverse problems</topic><topic>Laplace equations</topic><topic>Nerve fibers</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Neurology</topic><topic>Neuroscience</topic><topic>Peeling</topic><topic>Propagation delay</topic><topic>Signal detection</topic><topic>Velocity distribution</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Wave propagation</topic><topic>Wavelet</topic><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulou, F.A.</creatorcontrib><creatorcontrib>Panas, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Papadopoulou, F.A.</au><au>Panas, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>35</volume><issue>3</issue><spage>1801</spage><epage>1804</epage><pages>1801-1804</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The nerve conduction velocity distribution is estimated by a "peeling" concept method. The compound action potential is a linear summation of the single fiber action potentials propagating along the nerve fibers and can be expressed as the convolution of a delay sequence and the single fiber action potential wavelet. An algorithm based on the comparison of the front part of a continuously deconstructed compound action potential signal to a single fiber action potential wavelet is developed (i) to separate the delay sequence from the sampled compound action potential signal, and (ii) to estimate the distribution of the conduction velocities.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.767381</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1999-05, Vol.35 (3), p.1801-1804 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_767381 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biological and medical sciences Biomedical engineering Biomedical equipment Boundary conditions Conductivity Convolution Deconvolution Delay Delay estimation Electromagnetic fields Electrophysiology Estimation Fibers Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Inverse problems Laplace equations Nerve fibers Nerves Nervous system Neurology Neuroscience Peeling Propagation delay Signal detection Velocity distribution Vertebrates: nervous system and sense organs Wave propagation Wavelet |
title | Estimation of the nerve conduction velocity distribution by peeling sampled compound action potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20nerve%20conduction%20velocity%20distribution%20by%20peeling%20sampled%20compound%20action%20potentials&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Papadopoulou,%20F.A.&rft.date=1999-05-01&rft.volume=35&rft.issue=3&rft.spage=1801&rft.epage=1804&rft.pages=1801-1804&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.767381&rft_dat=%3Cproquest_RIE%3E919912240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21383176&rft_id=info:pmid/&rft_ieee_id=767381&rfr_iscdi=true |