Experiments in topic indexing of broadcast news using neural networks
The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1096 vol.2 |
---|---|
container_issue | |
container_start_page | 1093 |
container_title | |
container_volume | 2 |
creator | Neukirchen, C. Willett, D. Rigoll, G. |
description | The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method. |
doi_str_mv | 10.1109/ICASSP.1999.759934 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_759934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759934</ieee_id><sourcerecordid>759934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-294c0b8a561a4a9816d495bc73cf6a768e56913ed2c39b8b3d1175929b30e4583</originalsourceid><addsrcrecordid>eNotUEtqwzAUFP1A3TQXyMoXsKunJ8l6yxLSDwRaSAvdBUmWi9vUNpZD0ttXJZ3NDLMYZoaxBfASgNPt0_Jus3kpgYjKShGhPGOZwIoKIP5-zq55ZTgqLgEvWAZK8EKDpCs2j_GTJ0ileIUZW62OQxjb79BNMW-7fOqH1idRh2PbfeR9k7uxt7W3ccq7cIj5Pv75XdiPdpdoOvTjV7xhl43dxTD_5xl7u1-9Lh-L9fNDqrouWsFxKgRJz52xSoOVlgzoWpJyvkLfaFtpE5QmwFALj-SMwxogrRPkkAepDM7Y4pTbhhC2Q-ptx5_t6QD8BSetTW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experiments in topic indexing of broadcast news using neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neukirchen, C. ; Willett, D. ; Rigoll, G.</creator><creatorcontrib>Neukirchen, C. ; Willett, D. ; Rigoll, G.</creatorcontrib><description>The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780350413</identifier><identifier>ISBN: 9780780350410</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1999.759934</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic waves ; Broadcasting ; Computer science ; Data mining ; Indexing ; Intelligent networks ; Neural networks ; Smoothing methods ; Speech recognition ; Statistical analysis</subject><ispartof>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.1093-1096 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/759934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Willett, D.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><title>Experiments in topic indexing of broadcast news using neural networks</title><title>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</title><addtitle>ICASSP</addtitle><description>The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.</description><subject>Acoustic waves</subject><subject>Broadcasting</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Indexing</subject><subject>Intelligent networks</subject><subject>Neural networks</subject><subject>Smoothing methods</subject><subject>Speech recognition</subject><subject>Statistical analysis</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780350413</isbn><isbn>9780780350410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtqwzAUFP1A3TQXyMoXsKunJ8l6yxLSDwRaSAvdBUmWi9vUNpZD0ttXJZ3NDLMYZoaxBfASgNPt0_Jus3kpgYjKShGhPGOZwIoKIP5-zq55ZTgqLgEvWAZK8EKDpCs2j_GTJ0ileIUZW62OQxjb79BNMW-7fOqH1idRh2PbfeR9k7uxt7W3ccq7cIj5Pv75XdiPdpdoOvTjV7xhl43dxTD_5xl7u1-9Lh-L9fNDqrouWsFxKgRJz52xSoOVlgzoWpJyvkLfaFtpE5QmwFALj-SMwxogrRPkkAepDM7Y4pTbhhC2Q-ptx5_t6QD8BSetTW8</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Neukirchen, C.</creator><creator>Willett, D.</creator><creator>Rigoll, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Experiments in topic indexing of broadcast news using neural networks</title><author>Neukirchen, C. ; Willett, D. ; Rigoll, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-294c0b8a561a4a9816d495bc73cf6a768e56913ed2c39b8b3d1175929b30e4583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Acoustic waves</topic><topic>Broadcasting</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Indexing</topic><topic>Intelligent networks</topic><topic>Neural networks</topic><topic>Smoothing methods</topic><topic>Speech recognition</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Willett, D.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neukirchen, C.</au><au>Willett, D.</au><au>Rigoll, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experiments in topic indexing of broadcast news using neural networks</atitle><btitle>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</btitle><stitle>ICASSP</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1093</spage><epage>1096 vol.2</epage><pages>1093-1096 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780350413</isbn><isbn>9780780350410</isbn><abstract>The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1999.759934</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.1093-1096 vol.2 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_759934 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic waves Broadcasting Computer science Data mining Indexing Intelligent networks Neural networks Smoothing methods Speech recognition Statistical analysis |
title | Experiments in topic indexing of broadcast news using neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experiments%20in%20topic%20indexing%20of%20broadcast%20news%20using%20neural%20networks&rft.btitle=1999%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings.%20ICASSP99%20(Cat.%20No.99CH36258)&rft.au=Neukirchen,%20C.&rft.date=1999&rft.volume=2&rft.spage=1093&rft.epage=1096%20vol.2&rft.pages=1093-1096%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780350413&rft.isbn_list=9780780350410&rft_id=info:doi/10.1109/ICASSP.1999.759934&rft_dat=%3Cieee_6IE%3E759934%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=759934&rfr_iscdi=true |