Experiments in topic indexing of broadcast news using neural networks

The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neukirchen, C., Willett, D., Rigoll, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1096 vol.2
container_issue
container_start_page 1093
container_title
container_volume 2
creator Neukirchen, C.
Willett, D.
Rigoll, G.
description The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.
doi_str_mv 10.1109/ICASSP.1999.759934
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_759934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759934</ieee_id><sourcerecordid>759934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-294c0b8a561a4a9816d495bc73cf6a768e56913ed2c39b8b3d1175929b30e4583</originalsourceid><addsrcrecordid>eNotUEtqwzAUFP1A3TQXyMoXsKunJ8l6yxLSDwRaSAvdBUmWi9vUNpZD0ttXJZ3NDLMYZoaxBfASgNPt0_Jus3kpgYjKShGhPGOZwIoKIP5-zq55ZTgqLgEvWAZK8EKDpCs2j_GTJ0ileIUZW62OQxjb79BNMW-7fOqH1idRh2PbfeR9k7uxt7W3ccq7cIj5Pv75XdiPdpdoOvTjV7xhl43dxTD_5xl7u1-9Lh-L9fNDqrouWsFxKgRJz52xSoOVlgzoWpJyvkLfaFtpE5QmwFALj-SMwxogrRPkkAepDM7Y4pTbhhC2Q-ptx5_t6QD8BSetTW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experiments in topic indexing of broadcast news using neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neukirchen, C. ; Willett, D. ; Rigoll, G.</creator><creatorcontrib>Neukirchen, C. ; Willett, D. ; Rigoll, G.</creatorcontrib><description>The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780350413</identifier><identifier>ISBN: 9780780350410</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1999.759934</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic waves ; Broadcasting ; Computer science ; Data mining ; Indexing ; Intelligent networks ; Neural networks ; Smoothing methods ; Speech recognition ; Statistical analysis</subject><ispartof>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.1093-1096 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/759934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Willett, D.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><title>Experiments in topic indexing of broadcast news using neural networks</title><title>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</title><addtitle>ICASSP</addtitle><description>The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.</description><subject>Acoustic waves</subject><subject>Broadcasting</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Indexing</subject><subject>Intelligent networks</subject><subject>Neural networks</subject><subject>Smoothing methods</subject><subject>Speech recognition</subject><subject>Statistical analysis</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780350413</isbn><isbn>9780780350410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtqwzAUFP1A3TQXyMoXsKunJ8l6yxLSDwRaSAvdBUmWi9vUNpZD0ttXJZ3NDLMYZoaxBfASgNPt0_Jus3kpgYjKShGhPGOZwIoKIP5-zq55ZTgqLgEvWAZK8EKDpCs2j_GTJ0ileIUZW62OQxjb79BNMW-7fOqH1idRh2PbfeR9k7uxt7W3ccq7cIj5Pv75XdiPdpdoOvTjV7xhl43dxTD_5xl7u1-9Lh-L9fNDqrouWsFxKgRJz52xSoOVlgzoWpJyvkLfaFtpE5QmwFALj-SMwxogrRPkkAepDM7Y4pTbhhC2Q-ptx5_t6QD8BSetTW8</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Neukirchen, C.</creator><creator>Willett, D.</creator><creator>Rigoll, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Experiments in topic indexing of broadcast news using neural networks</title><author>Neukirchen, C. ; Willett, D. ; Rigoll, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-294c0b8a561a4a9816d495bc73cf6a768e56913ed2c39b8b3d1175929b30e4583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Acoustic waves</topic><topic>Broadcasting</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Indexing</topic><topic>Intelligent networks</topic><topic>Neural networks</topic><topic>Smoothing methods</topic><topic>Speech recognition</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Willett, D.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neukirchen, C.</au><au>Willett, D.</au><au>Rigoll, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experiments in topic indexing of broadcast news using neural networks</atitle><btitle>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</btitle><stitle>ICASSP</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1093</spage><epage>1096 vol.2</epage><pages>1093-1096 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780350413</isbn><isbn>9780780350410</isbn><abstract>The paper deals with the problem of extracting topic information from news show stories by statistical methods. It is shown that the traditional topic-dependent n-gram language modeling approach can be decomposed in order to apply neural networks for topic indexing. Two specific problems in training of these networks are addressed: a very sparse data distribution in the stories and the superposition of different topics in a story. The first problem is tackled by an integrated smoothing approach in the backpropagation method; an expansion of the neural network structure can be used to cope with topic mixtures in stories. Due to the efficient parameter sharing the application of neural networks results in a small improvement in topic indexing performance on a small corpus of broadcast news compared to the traditional topic-dependent n-gram method.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1999.759934</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.1093-1096 vol.2
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_759934
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic waves
Broadcasting
Computer science
Data mining
Indexing
Intelligent networks
Neural networks
Smoothing methods
Speech recognition
Statistical analysis
title Experiments in topic indexing of broadcast news using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experiments%20in%20topic%20indexing%20of%20broadcast%20news%20using%20neural%20networks&rft.btitle=1999%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings.%20ICASSP99%20(Cat.%20No.99CH36258)&rft.au=Neukirchen,%20C.&rft.date=1999&rft.volume=2&rft.spage=1093&rft.epage=1096%20vol.2&rft.pages=1093-1096%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780350413&rft.isbn_list=9780780350410&rft_id=info:doi/10.1109/ICASSP.1999.759934&rft_dat=%3Cieee_6IE%3E759934%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=759934&rfr_iscdi=true