Adaptive two-band spectral subtraction with multi-window spectral estimation

An improved spectral subtraction algorithm for enhancing speech corrupted by additive wideband noise is described. The artifactual noise introduced by spectral subtraction that is perceived as musical noise is 7 dB less than that introduced by the classical spectral subtraction algorithm of Berouti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chuang He, Zweig, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796 vol.2
container_issue
container_start_page 793
container_title
container_volume 2
creator Chuang He
Zweig, G.
description An improved spectral subtraction algorithm for enhancing speech corrupted by additive wideband noise is described. The artifactual noise introduced by spectral subtraction that is perceived as musical noise is 7 dB less than that introduced by the classical spectral subtraction algorithm of Berouti et al. (1979). Speech is decomposed into voiced and unvoiced sections. Since voiced speech is primarily stochastic at high frequencies, the voiced speech is high-pass filtered to extract its stochastic component. The cut-off frequency is estimated adaptively. Multi-window spectral estimation is used to estimate the spectrum of stochastically voiced and unvoiced speech, thereby reducing the spectral variance. A low-pass filter is used to extract the deterministic component of voiced speech. Its spectrum is estimated with a single window. Spectral subtraction is performed with the classical algorithm using the estimated spectra. Informal listening tests confirm that the new algorithm creates significantly less musical noise than the classical algorithm.
doi_str_mv 10.1109/ICASSP.1999.759790
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_759790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>759790</ieee_id><sourcerecordid>759790</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-2bb3e27128bda772658489a02bf3a79371515b873d7b71fac588791bd6182ffd3</originalsourceid><addsrcrecordid>eNpFkMtqwzAUREUfUDfND2TlH1CqK1m-0jKEvsDQQlroLkiWTFUc21hKTf--Lil0NmczzAxDyArYGoDp26ftZrd7WYPWeo1So2ZnJOMCNQXN3s_JNUPFhGQFiAuSgeSMllDoK7KM8ZPNKqRkKDJSbZwZUvjyeZp6ak3n8jj4Oo2mzePRzqxT6Lt8CukjPxzbFOgUOtdP_zYfUziYX9cNuWxMG_3yjwvydn_3un2k1fPDvLiiAViRKLdWeI7AlXUGkZdSFUobxm0jDGqBIEFahcKhRWhMLZVCDdaVoHjTOLEgq1Nu8N7vh3GuH7_3px_ED_XlULI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive two-band spectral subtraction with multi-window spectral estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chuang He ; Zweig, G.</creator><creatorcontrib>Chuang He ; Zweig, G.</creatorcontrib><description>An improved spectral subtraction algorithm for enhancing speech corrupted by additive wideband noise is described. The artifactual noise introduced by spectral subtraction that is perceived as musical noise is 7 dB less than that introduced by the classical spectral subtraction algorithm of Berouti et al. (1979). Speech is decomposed into voiced and unvoiced sections. Since voiced speech is primarily stochastic at high frequencies, the voiced speech is high-pass filtered to extract its stochastic component. The cut-off frequency is estimated adaptively. Multi-window spectral estimation is used to estimate the spectrum of stochastically voiced and unvoiced speech, thereby reducing the spectral variance. A low-pass filter is used to extract the deterministic component of voiced speech. Its spectrum is estimated with a single window. Spectral subtraction is performed with the classical algorithm using the estimated spectra. Informal listening tests confirm that the new algorithm creates significantly less musical noise than the classical algorithm.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780350413</identifier><identifier>ISBN: 9780780350410</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1999.759790</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive noise ; Background noise ; Cutoff frequency ; Frequency estimation ; Laboratories ; Noise level ; Noise reduction ; Speech enhancement ; Stochastic processes ; Stochastic resonance</subject><ispartof>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.793-796 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/759790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/759790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chuang He</creatorcontrib><creatorcontrib>Zweig, G.</creatorcontrib><title>Adaptive two-band spectral subtraction with multi-window spectral estimation</title><title>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</title><addtitle>ICASSP</addtitle><description>An improved spectral subtraction algorithm for enhancing speech corrupted by additive wideband noise is described. The artifactual noise introduced by spectral subtraction that is perceived as musical noise is 7 dB less than that introduced by the classical spectral subtraction algorithm of Berouti et al. (1979). Speech is decomposed into voiced and unvoiced sections. Since voiced speech is primarily stochastic at high frequencies, the voiced speech is high-pass filtered to extract its stochastic component. The cut-off frequency is estimated adaptively. Multi-window spectral estimation is used to estimate the spectrum of stochastically voiced and unvoiced speech, thereby reducing the spectral variance. A low-pass filter is used to extract the deterministic component of voiced speech. Its spectrum is estimated with a single window. Spectral subtraction is performed with the classical algorithm using the estimated spectra. Informal listening tests confirm that the new algorithm creates significantly less musical noise than the classical algorithm.</description><subject>Additive noise</subject><subject>Background noise</subject><subject>Cutoff frequency</subject><subject>Frequency estimation</subject><subject>Laboratories</subject><subject>Noise level</subject><subject>Noise reduction</subject><subject>Speech enhancement</subject><subject>Stochastic processes</subject><subject>Stochastic resonance</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780350413</isbn><isbn>9780780350410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtqwzAUREUfUDfND2TlH1CqK1m-0jKEvsDQQlroLkiWTFUc21hKTf--Lil0NmczzAxDyArYGoDp26ftZrd7WYPWeo1So2ZnJOMCNQXN3s_JNUPFhGQFiAuSgeSMllDoK7KM8ZPNKqRkKDJSbZwZUvjyeZp6ak3n8jj4Oo2mzePRzqxT6Lt8CukjPxzbFOgUOtdP_zYfUziYX9cNuWxMG_3yjwvydn_3un2k1fPDvLiiAViRKLdWeI7AlXUGkZdSFUobxm0jDGqBIEFahcKhRWhMLZVCDdaVoHjTOLEgq1Nu8N7vh3GuH7_3px_ED_XlULI</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Chuang He</creator><creator>Zweig, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Adaptive two-band spectral subtraction with multi-window spectral estimation</title><author>Chuang He ; Zweig, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-2bb3e27128bda772658489a02bf3a79371515b873d7b71fac588791bd6182ffd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Additive noise</topic><topic>Background noise</topic><topic>Cutoff frequency</topic><topic>Frequency estimation</topic><topic>Laboratories</topic><topic>Noise level</topic><topic>Noise reduction</topic><topic>Speech enhancement</topic><topic>Stochastic processes</topic><topic>Stochastic resonance</topic><toplevel>online_resources</toplevel><creatorcontrib>Chuang He</creatorcontrib><creatorcontrib>Zweig, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chuang He</au><au>Zweig, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive two-band spectral subtraction with multi-window spectral estimation</atitle><btitle>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</btitle><stitle>ICASSP</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>793</spage><epage>796 vol.2</epage><pages>793-796 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780350413</isbn><isbn>9780780350410</isbn><abstract>An improved spectral subtraction algorithm for enhancing speech corrupted by additive wideband noise is described. The artifactual noise introduced by spectral subtraction that is perceived as musical noise is 7 dB less than that introduced by the classical spectral subtraction algorithm of Berouti et al. (1979). Speech is decomposed into voiced and unvoiced sections. Since voiced speech is primarily stochastic at high frequencies, the voiced speech is high-pass filtered to extract its stochastic component. The cut-off frequency is estimated adaptively. Multi-window spectral estimation is used to estimate the spectrum of stochastically voiced and unvoiced speech, thereby reducing the spectral variance. A low-pass filter is used to extract the deterministic component of voiced speech. Its spectrum is estimated with a single window. Spectral subtraction is performed with the classical algorithm using the estimated spectra. Informal listening tests confirm that the new algorithm creates significantly less musical noise than the classical algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1999.759790</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.2, p.793-796 vol.2
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_759790
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Additive noise
Background noise
Cutoff frequency
Frequency estimation
Laboratories
Noise level
Noise reduction
Speech enhancement
Stochastic processes
Stochastic resonance
title Adaptive two-band spectral subtraction with multi-window spectral estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20two-band%20spectral%20subtraction%20with%20multi-window%20spectral%20estimation&rft.btitle=1999%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings.%20ICASSP99%20(Cat.%20No.99CH36258)&rft.au=Chuang%20He&rft.date=1999&rft.volume=2&rft.spage=793&rft.epage=796%20vol.2&rft.pages=793-796%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780350413&rft.isbn_list=9780780350410&rft_id=info:doi/10.1109/ICASSP.1999.759790&rft_dat=%3Cieee_6IE%3E759790%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=759790&rfr_iscdi=true