A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data
Land surface temperature (LST) is a key climate variable for studying the energy and water balance of the earth surface and monitoring the effects of climate change. This paper presents a physics-based temperature emissivity separation (TES) algorithm for the simultaneous retrieval of LST and emissi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2017-01, Vol.55 (1), p.563-576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 1 |
container_start_page | 563 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 55 |
creator | Islam, Tanvir Hulley, Glynn C. Malakar, Nabin K. Radocinski, Robert G. Guillevic, Pierre C. Hook, Simon J. |
description | Land surface temperature (LST) is a key climate variable for studying the energy and water balance of the earth surface and monitoring the effects of climate change. This paper presents a physics-based temperature emissivity separation (TES) algorithm for the simultaneous retrieval of LST and emissivity (LST&E) from the thermal infrared bands of the Suomi National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (VIIRS) payload. The new VIIRS LST&E product (VNP21) was developed to provide continuity with the Moderate-Resolution Imaging Spectroradiometer (MODIS) equivalent LST&E product (MxD21) product, which is available in Collection 6, and to address inconsistencies between the current MODIS and VIIRS split-window LST products. The TES algorithm uses full radiative transfer simulations to isolate the surface emitted radiance, and an emissivity calibration curve based on the variability in the surface radiance data to dynamically retrieve both LST and spectral emissivity. Furthermore, an improved water vapor scaling model was implemented to improve the accuracy and stability of the atmospheric correction for conditions with high atmospheric water vapor content. An independent assessment of the VIIRS LST retrievals was performed against in situ LST measurements over two dedicated validation sites at Lake Tahoe and Salton Sea in the Southwestern USA, while the VIIRS emissivity retrievals were evaluated with the latest ASTER Global Emissivity Dataset Version 3 (GEDv3). The bias and root-mean-square error (RMSE) in retrieved VIIRS LST were 0.50 and 1.40 K, respectively for the two sites combined, while mean emissivity differences between VIIRS and ASTER GEDv3 were 0.2%, 0.1%, and 0.3% for bands M14 ( 8.55~\mu \text{m} ), M15 ( 10.76~\mu \text{m} ), and M16 ( 12.01~\mu \text{m} ), respectively, with an RMSE of 1%. We further demonstrate close agreement between the MODIS and VIIRS TES algorithm LST products to within ~0.3 K difference, as opposed to the current MODIS and VIIRS split window products, which had an average difference of 3 K. |
doi_str_mv | 10.1109/TGRS.2016.2611566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7593262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7593262</ieee_id><sourcerecordid>1845316678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9cafaf80c2dc34f8996d1dee0e8264a845ecbec767da241c4d5ae982712ad5ce3</originalsourceid><addsrcrecordid>eNo9kE1LKzEUhoN4wer1B4ibgOupOZlJZrKs34XCvbTV7XDMnNhIp1OTjNC9P9wpFVcHDu_zvvAwdgFiDCDM9fJxvhhLAXosNYDS-oiNQKkqE7oojtlIgNGZrIw8YacxvgsBhYJyxL4m_P9qF72N2Q1Gavhk_dYFn1Ytd13gaUV84dt-nXBDXR_5nFLw9Ilr3jk-w03DF31waIkvqd1SwNQH4vv_fetj9J8-7fhD6Fr-Mp3OF3y5otAO9HTjAoZh7w4T_mV_HK4jnf_cM_b8cL-8fcpm_x6nt5NZZnNlUmYsOnSVsLKxeeEqY3QDDZGgSuoCq0KRfSVb6rJBWYAtGoVkKlmCxEZZys_Y1aF3G7qPnmKq37s-bIbJGgY6B63LakjBIWVDF2MgV2-DbzHsahD1Xna9l13vZdc_sgfm8sB4IvrNl8rkUsv8G0rGfPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845316678</pqid></control><display><type>article</type><title>A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data</title><source>IEEE Electronic Library (IEL)</source><creator>Islam, Tanvir ; Hulley, Glynn C. ; Malakar, Nabin K. ; Radocinski, Robert G. ; Guillevic, Pierre C. ; Hook, Simon J.</creator><creatorcontrib>Islam, Tanvir ; Hulley, Glynn C. ; Malakar, Nabin K. ; Radocinski, Robert G. ; Guillevic, Pierre C. ; Hook, Simon J.</creatorcontrib><description><![CDATA[Land surface temperature (LST) is a key climate variable for studying the energy and water balance of the earth surface and monitoring the effects of climate change. This paper presents a physics-based temperature emissivity separation (TES) algorithm for the simultaneous retrieval of LST and emissivity (LST&E) from the thermal infrared bands of the Suomi National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (VIIRS) payload. The new VIIRS LST&E product (VNP21) was developed to provide continuity with the Moderate-Resolution Imaging Spectroradiometer (MODIS) equivalent LST&E product (MxD21) product, which is available in Collection 6, and to address inconsistencies between the current MODIS and VIIRS split-window LST products. The TES algorithm uses full radiative transfer simulations to isolate the surface emitted radiance, and an emissivity calibration curve based on the variability in the surface radiance data to dynamically retrieve both LST and spectral emissivity. Furthermore, an improved water vapor scaling model was implemented to improve the accuracy and stability of the atmospheric correction for conditions with high atmospheric water vapor content. An independent assessment of the VIIRS LST retrievals was performed against in situ LST measurements over two dedicated validation sites at Lake Tahoe and Salton Sea in the Southwestern USA, while the VIIRS emissivity retrievals were evaluated with the latest ASTER Global Emissivity Dataset Version 3 (GEDv3). The bias and root-mean-square error (RMSE) in retrieved VIIRS LST were 0.50 and 1.40 K, respectively for the two sites combined, while mean emissivity differences between VIIRS and ASTER GEDv3 were 0.2%, 0.1%, and 0.3% for bands M14 (<inline-formula> <tex-math notation="LaTeX">8.55~\mu \text{m} </tex-math></inline-formula>), M15 (<inline-formula> <tex-math notation="LaTeX">10.76~\mu \text{m} </tex-math></inline-formula>), and M16 (<inline-formula> <tex-math notation="LaTeX">12.01~\mu \text{m} </tex-math></inline-formula>), respectively, with an RMSE of 1%. We further demonstrate close agreement between the MODIS and VIIRS TES algorithm LST products to within ~0.3 K difference, as opposed to the current MODIS and VIIRS split window products, which had an average difference of 3 K.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2016.2611566</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Atmospheric correction ; Atmospheric modeling ; Atmospheric water ; Calibration ; Climate change ; Climate effects ; Cross validation ; Earth surface ; Emissivity ; Imaging radiometers ; Imaging techniques ; Infrared imaging ; Infrared radiometers ; intercomparison ; Joint Polar Satellite System (JPSS)/NPOESS satellites ; Lakes ; Land surface ; Land surface temperature ; land surface temperature (LST) ; Meteorological satellites ; MODIS ; multispectral remote sensing ; Ocean temperature ; Physics ; Radiance ; Radiative transfer ; Radiometers ; Radiometry ; Retrieval ; Root-mean-square errors ; Satellite broadcasting ; Satellites ; Scaling ; Spectral emissivity ; spectral emissivity retrieval ; Spectroradiometers ; Suomi National Polar-Orbiting Partnership (NPP) satellite ; Surface temperature ; Temperature ; Water balance ; Water pollution effects ; Water vapor ; Water vapour</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-01, Vol.55 (1), p.563-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9cafaf80c2dc34f8996d1dee0e8264a845ecbec767da241c4d5ae982712ad5ce3</citedby><cites>FETCH-LOGICAL-c359t-9cafaf80c2dc34f8996d1dee0e8264a845ecbec767da241c4d5ae982712ad5ce3</cites><orcidid>0000-0003-2429-3074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7593262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7593262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Hulley, Glynn C.</creatorcontrib><creatorcontrib>Malakar, Nabin K.</creatorcontrib><creatorcontrib>Radocinski, Robert G.</creatorcontrib><creatorcontrib>Guillevic, Pierre C.</creatorcontrib><creatorcontrib>Hook, Simon J.</creatorcontrib><title>A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Land surface temperature (LST) is a key climate variable for studying the energy and water balance of the earth surface and monitoring the effects of climate change. This paper presents a physics-based temperature emissivity separation (TES) algorithm for the simultaneous retrieval of LST and emissivity (LST&E) from the thermal infrared bands of the Suomi National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (VIIRS) payload. The new VIIRS LST&E product (VNP21) was developed to provide continuity with the Moderate-Resolution Imaging Spectroradiometer (MODIS) equivalent LST&E product (MxD21) product, which is available in Collection 6, and to address inconsistencies between the current MODIS and VIIRS split-window LST products. The TES algorithm uses full radiative transfer simulations to isolate the surface emitted radiance, and an emissivity calibration curve based on the variability in the surface radiance data to dynamically retrieve both LST and spectral emissivity. Furthermore, an improved water vapor scaling model was implemented to improve the accuracy and stability of the atmospheric correction for conditions with high atmospheric water vapor content. An independent assessment of the VIIRS LST retrievals was performed against in situ LST measurements over two dedicated validation sites at Lake Tahoe and Salton Sea in the Southwestern USA, while the VIIRS emissivity retrievals were evaluated with the latest ASTER Global Emissivity Dataset Version 3 (GEDv3). The bias and root-mean-square error (RMSE) in retrieved VIIRS LST were 0.50 and 1.40 K, respectively for the two sites combined, while mean emissivity differences between VIIRS and ASTER GEDv3 were 0.2%, 0.1%, and 0.3% for bands M14 (<inline-formula> <tex-math notation="LaTeX">8.55~\mu \text{m} </tex-math></inline-formula>), M15 (<inline-formula> <tex-math notation="LaTeX">10.76~\mu \text{m} </tex-math></inline-formula>), and M16 (<inline-formula> <tex-math notation="LaTeX">12.01~\mu \text{m} </tex-math></inline-formula>), respectively, with an RMSE of 1%. We further demonstrate close agreement between the MODIS and VIIRS TES algorithm LST products to within ~0.3 K difference, as opposed to the current MODIS and VIIRS split window products, which had an average difference of 3 K.]]></description><subject>Algorithms</subject><subject>Atmospheric correction</subject><subject>Atmospheric modeling</subject><subject>Atmospheric water</subject><subject>Calibration</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Cross validation</subject><subject>Earth surface</subject><subject>Emissivity</subject><subject>Imaging radiometers</subject><subject>Imaging techniques</subject><subject>Infrared imaging</subject><subject>Infrared radiometers</subject><subject>intercomparison</subject><subject>Joint Polar Satellite System (JPSS)/NPOESS satellites</subject><subject>Lakes</subject><subject>Land surface</subject><subject>Land surface temperature</subject><subject>land surface temperature (LST)</subject><subject>Meteorological satellites</subject><subject>MODIS</subject><subject>multispectral remote sensing</subject><subject>Ocean temperature</subject><subject>Physics</subject><subject>Radiance</subject><subject>Radiative transfer</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Retrieval</subject><subject>Root-mean-square errors</subject><subject>Satellite broadcasting</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Spectral emissivity</subject><subject>spectral emissivity retrieval</subject><subject>Spectroradiometers</subject><subject>Suomi National Polar-Orbiting Partnership (NPP) satellite</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Water balance</subject><subject>Water pollution effects</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LKzEUhoN4wer1B4ibgOupOZlJZrKs34XCvbTV7XDMnNhIp1OTjNC9P9wpFVcHDu_zvvAwdgFiDCDM9fJxvhhLAXosNYDS-oiNQKkqE7oojtlIgNGZrIw8YacxvgsBhYJyxL4m_P9qF72N2Q1Gavhk_dYFn1Ytd13gaUV84dt-nXBDXR_5nFLw9Ilr3jk-w03DF31waIkvqd1SwNQH4vv_fetj9J8-7fhD6Fr-Mp3OF3y5otAO9HTjAoZh7w4T_mV_HK4jnf_cM_b8cL-8fcpm_x6nt5NZZnNlUmYsOnSVsLKxeeEqY3QDDZGgSuoCq0KRfSVb6rJBWYAtGoVkKlmCxEZZys_Y1aF3G7qPnmKq37s-bIbJGgY6B63LakjBIWVDF2MgV2-DbzHsahD1Xna9l13vZdc_sgfm8sB4IvrNl8rkUsv8G0rGfPg</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Islam, Tanvir</creator><creator>Hulley, Glynn C.</creator><creator>Malakar, Nabin K.</creator><creator>Radocinski, Robert G.</creator><creator>Guillevic, Pierre C.</creator><creator>Hook, Simon J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2429-3074</orcidid></search><sort><creationdate>201701</creationdate><title>A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data</title><author>Islam, Tanvir ; Hulley, Glynn C. ; Malakar, Nabin K. ; Radocinski, Robert G. ; Guillevic, Pierre C. ; Hook, Simon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9cafaf80c2dc34f8996d1dee0e8264a845ecbec767da241c4d5ae982712ad5ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atmospheric correction</topic><topic>Atmospheric modeling</topic><topic>Atmospheric water</topic><topic>Calibration</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Cross validation</topic><topic>Earth surface</topic><topic>Emissivity</topic><topic>Imaging radiometers</topic><topic>Imaging techniques</topic><topic>Infrared imaging</topic><topic>Infrared radiometers</topic><topic>intercomparison</topic><topic>Joint Polar Satellite System (JPSS)/NPOESS satellites</topic><topic>Lakes</topic><topic>Land surface</topic><topic>Land surface temperature</topic><topic>land surface temperature (LST)</topic><topic>Meteorological satellites</topic><topic>MODIS</topic><topic>multispectral remote sensing</topic><topic>Ocean temperature</topic><topic>Physics</topic><topic>Radiance</topic><topic>Radiative transfer</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Retrieval</topic><topic>Root-mean-square errors</topic><topic>Satellite broadcasting</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Spectral emissivity</topic><topic>spectral emissivity retrieval</topic><topic>Spectroradiometers</topic><topic>Suomi National Polar-Orbiting Partnership (NPP) satellite</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Water balance</topic><topic>Water pollution effects</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Tanvir</creatorcontrib><creatorcontrib>Hulley, Glynn C.</creatorcontrib><creatorcontrib>Malakar, Nabin K.</creatorcontrib><creatorcontrib>Radocinski, Robert G.</creatorcontrib><creatorcontrib>Guillevic, Pierre C.</creatorcontrib><creatorcontrib>Hook, Simon J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, Tanvir</au><au>Hulley, Glynn C.</au><au>Malakar, Nabin K.</au><au>Radocinski, Robert G.</au><au>Guillevic, Pierre C.</au><au>Hook, Simon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2017-01</date><risdate>2017</risdate><volume>55</volume><issue>1</issue><spage>563</spage><epage>576</epage><pages>563-576</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Land surface temperature (LST) is a key climate variable for studying the energy and water balance of the earth surface and monitoring the effects of climate change. This paper presents a physics-based temperature emissivity separation (TES) algorithm for the simultaneous retrieval of LST and emissivity (LST&E) from the thermal infrared bands of the Suomi National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (VIIRS) payload. The new VIIRS LST&E product (VNP21) was developed to provide continuity with the Moderate-Resolution Imaging Spectroradiometer (MODIS) equivalent LST&E product (MxD21) product, which is available in Collection 6, and to address inconsistencies between the current MODIS and VIIRS split-window LST products. The TES algorithm uses full radiative transfer simulations to isolate the surface emitted radiance, and an emissivity calibration curve based on the variability in the surface radiance data to dynamically retrieve both LST and spectral emissivity. Furthermore, an improved water vapor scaling model was implemented to improve the accuracy and stability of the atmospheric correction for conditions with high atmospheric water vapor content. An independent assessment of the VIIRS LST retrievals was performed against in situ LST measurements over two dedicated validation sites at Lake Tahoe and Salton Sea in the Southwestern USA, while the VIIRS emissivity retrievals were evaluated with the latest ASTER Global Emissivity Dataset Version 3 (GEDv3). The bias and root-mean-square error (RMSE) in retrieved VIIRS LST were 0.50 and 1.40 K, respectively for the two sites combined, while mean emissivity differences between VIIRS and ASTER GEDv3 were 0.2%, 0.1%, and 0.3% for bands M14 (<inline-formula> <tex-math notation="LaTeX">8.55~\mu \text{m} </tex-math></inline-formula>), M15 (<inline-formula> <tex-math notation="LaTeX">10.76~\mu \text{m} </tex-math></inline-formula>), and M16 (<inline-formula> <tex-math notation="LaTeX">12.01~\mu \text{m} </tex-math></inline-formula>), respectively, with an RMSE of 1%. We further demonstrate close agreement between the MODIS and VIIRS TES algorithm LST products to within ~0.3 K difference, as opposed to the current MODIS and VIIRS split window products, which had an average difference of 3 K.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2016.2611566</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2429-3074</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2017-01, Vol.55 (1), p.563-576 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_7593262 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Atmospheric correction Atmospheric modeling Atmospheric water Calibration Climate change Climate effects Cross validation Earth surface Emissivity Imaging radiometers Imaging techniques Infrared imaging Infrared radiometers intercomparison Joint Polar Satellite System (JPSS)/NPOESS satellites Lakes Land surface Land surface temperature land surface temperature (LST) Meteorological satellites MODIS multispectral remote sensing Ocean temperature Physics Radiance Radiative transfer Radiometers Radiometry Retrieval Root-mean-square errors Satellite broadcasting Satellites Scaling Spectral emissivity spectral emissivity retrieval Spectroradiometers Suomi National Polar-Orbiting Partnership (NPP) satellite Surface temperature Temperature Water balance Water pollution effects Water vapor Water vapour |
title | A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physics-Based%20Algorithm%20for%20the%20Simultaneous%20Retrieval%20of%20Land%20Surface%20Temperature%20and%20Emissivity%20From%20VIIRS%20Thermal%20Infrared%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Islam,%20Tanvir&rft.date=2017-01&rft.volume=55&rft.issue=1&rft.spage=563&rft.epage=576&rft.pages=563-576&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2016.2611566&rft_dat=%3Cproquest_RIE%3E1845316678%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845316678&rft_id=info:pmid/&rft_ieee_id=7593262&rfr_iscdi=true |