Variable Generation Power Forecasting as a Big Data Problem

To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2017-04, Vol.8 (2), p.725-732
Hauptverfasser: Haupt, Sue Ellen, Kosovic, Branko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732
container_issue 2
container_start_page 725
container_title IEEE transactions on sustainable energy
container_volume 8
creator Haupt, Sue Ellen
Kosovic, Branko
description To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.
doi_str_mv 10.1109/TSTE.2016.2604679
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7587426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7587426</ieee_id><sourcerecordid>10_1109_TSTE_2016_2604679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gHgJ3rfmOxs8aW2rULBg9Rpm09kaaXclWRD_fbe0dC7vHJ53GB5Cbjkbc87cw-pjNR0Lxs1YGKaMdRdkwJ1yhWTSXp534a7JKOcf1o-U0kg2II9fkCJUW6RzbDBBF9uGLts_THTWJgyQu9hsKGQK9Dlu6At0QJep7Ru7G3JVwzbj6JRD8jmbriavxeJ9_jZ5WhRBSt0VpgSuWal4VZtQASuDBqVcFVhlwJXCCtRGWunWitWq1lYIpTQwV3PH12jlkNwf77b9Mz6H2GH4Dm3TYOg8l8oKK3uIH6GQ2pwT1v43xR2kf8-ZP1jyB0v-YMmfLPWdu2MnIuKZt7q0Shi5B5DqYMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variable Generation Power Forecasting as a Big Data Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Haupt, Sue Ellen ; Kosovic, Branko</creator><creatorcontrib>Haupt, Sue Ellen ; Kosovic, Branko ; National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</creatorcontrib><description>To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2016.2604679</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Big data ; Computational modeling ; Data models ; ENERGY PLANNING, POLICY, AND ECONOMY ; Mathematical model ; power forecasting ; Real-time systems ; SOLAR ENERGY ; variable generation ; WIND ENERGY ; Wind forecasting</subject><ispartof>IEEE transactions on sustainable energy, 2017-04, Vol.8 (2), p.725-732</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</citedby><cites>FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7587426$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,794,883,27907,27908,54741</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1347273$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haupt, Sue Ellen</creatorcontrib><creatorcontrib>Kosovic, Branko</creatorcontrib><creatorcontrib>National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</creatorcontrib><title>Variable Generation Power Forecasting as a Big Data Problem</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.</description><subject>Big data</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>Mathematical model</subject><subject>power forecasting</subject><subject>Real-time systems</subject><subject>SOLAR ENERGY</subject><subject>variable generation</subject><subject>WIND ENERGY</subject><subject>Wind forecasting</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGp_gHgJ3rfmOxs8aW2rULBg9Rpm09kaaXclWRD_fbe0dC7vHJ53GB5Cbjkbc87cw-pjNR0Lxs1YGKaMdRdkwJ1yhWTSXp534a7JKOcf1o-U0kg2II9fkCJUW6RzbDBBF9uGLts_THTWJgyQu9hsKGQK9Dlu6At0QJep7Ru7G3JVwzbj6JRD8jmbriavxeJ9_jZ5WhRBSt0VpgSuWal4VZtQASuDBqVcFVhlwJXCCtRGWunWitWq1lYIpTQwV3PH12jlkNwf77b9Mz6H2GH4Dm3TYOg8l8oKK3uIH6GQ2pwT1v43xR2kf8-ZP1jyB0v-YMmfLPWdu2MnIuKZt7q0Shi5B5DqYMc</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Haupt, Sue Ellen</creator><creator>Kosovic, Branko</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201704</creationdate><title>Variable Generation Power Forecasting as a Big Data Problem</title><author>Haupt, Sue Ellen ; Kosovic, Branko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big data</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>Mathematical model</topic><topic>power forecasting</topic><topic>Real-time systems</topic><topic>SOLAR ENERGY</topic><topic>variable generation</topic><topic>WIND ENERGY</topic><topic>Wind forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, Sue Ellen</creatorcontrib><creatorcontrib>Kosovic, Branko</creatorcontrib><creatorcontrib>National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haupt, Sue Ellen</au><au>Kosovic, Branko</au><aucorp>National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Generation Power Forecasting as a Big Data Problem</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2017-04</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>725</spage><epage>732</epage><pages>725-732</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TSTE.2016.2604679</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2017-04, Vol.8 (2), p.725-732
issn 1949-3029
1949-3037
language eng
recordid cdi_ieee_primary_7587426
source IEEE Electronic Library (IEL)
subjects Big data
Computational modeling
Data models
ENERGY PLANNING, POLICY, AND ECONOMY
Mathematical model
power forecasting
Real-time systems
SOLAR ENERGY
variable generation
WIND ENERGY
Wind forecasting
title Variable Generation Power Forecasting as a Big Data Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Generation%20Power%20Forecasting%20as%20a%20Big%20Data%20Problem&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Haupt,%20Sue%20Ellen&rft.aucorp=National%20Center%20for%20Atmospheric%20Research%20(NCAR),%20Boulder,%20CO%20(United%20States)&rft.date=2017-04&rft.volume=8&rft.issue=2&rft.spage=725&rft.epage=732&rft.pages=725-732&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2016.2604679&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSTE_2016_2604679%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7587426&rfr_iscdi=true