Variable Generation Power Forecasting as a Big Data Problem
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the tem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2017-04, Vol.8 (2), p.725-732 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 2 |
container_start_page | 725 |
container_title | IEEE transactions on sustainable energy |
container_volume | 8 |
creator | Haupt, Sue Ellen Kosovic, Branko |
description | To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues. |
doi_str_mv | 10.1109/TSTE.2016.2604679 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7587426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7587426</ieee_id><sourcerecordid>10_1109_TSTE_2016_2604679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gHgJ3rfmOxs8aW2rULBg9Rpm09kaaXclWRD_fbe0dC7vHJ53GB5Cbjkbc87cw-pjNR0Lxs1YGKaMdRdkwJ1yhWTSXp534a7JKOcf1o-U0kg2II9fkCJUW6RzbDBBF9uGLts_THTWJgyQu9hsKGQK9Dlu6At0QJep7Ru7G3JVwzbj6JRD8jmbriavxeJ9_jZ5WhRBSt0VpgSuWal4VZtQASuDBqVcFVhlwJXCCtRGWunWitWq1lYIpTQwV3PH12jlkNwf77b9Mz6H2GH4Dm3TYOg8l8oKK3uIH6GQ2pwT1v43xR2kf8-ZP1jyB0v-YMmfLPWdu2MnIuKZt7q0Shi5B5DqYMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variable Generation Power Forecasting as a Big Data Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Haupt, Sue Ellen ; Kosovic, Branko</creator><creatorcontrib>Haupt, Sue Ellen ; Kosovic, Branko ; National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</creatorcontrib><description>To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2016.2604679</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Big data ; Computational modeling ; Data models ; ENERGY PLANNING, POLICY, AND ECONOMY ; Mathematical model ; power forecasting ; Real-time systems ; SOLAR ENERGY ; variable generation ; WIND ENERGY ; Wind forecasting</subject><ispartof>IEEE transactions on sustainable energy, 2017-04, Vol.8 (2), p.725-732</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</citedby><cites>FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7587426$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,794,883,27907,27908,54741</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1347273$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haupt, Sue Ellen</creatorcontrib><creatorcontrib>Kosovic, Branko</creatorcontrib><creatorcontrib>National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</creatorcontrib><title>Variable Generation Power Forecasting as a Big Data Problem</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.</description><subject>Big data</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>Mathematical model</subject><subject>power forecasting</subject><subject>Real-time systems</subject><subject>SOLAR ENERGY</subject><subject>variable generation</subject><subject>WIND ENERGY</subject><subject>Wind forecasting</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGp_gHgJ3rfmOxs8aW2rULBg9Rpm09kaaXclWRD_fbe0dC7vHJ53GB5Cbjkbc87cw-pjNR0Lxs1YGKaMdRdkwJ1yhWTSXp534a7JKOcf1o-U0kg2II9fkCJUW6RzbDBBF9uGLts_THTWJgyQu9hsKGQK9Dlu6At0QJep7Ru7G3JVwzbj6JRD8jmbriavxeJ9_jZ5WhRBSt0VpgSuWal4VZtQASuDBqVcFVhlwJXCCtRGWunWitWq1lYIpTQwV3PH12jlkNwf77b9Mz6H2GH4Dm3TYOg8l8oKK3uIH6GQ2pwT1v43xR2kf8-ZP1jyB0v-YMmfLPWdu2MnIuKZt7q0Shi5B5DqYMc</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Haupt, Sue Ellen</creator><creator>Kosovic, Branko</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201704</creationdate><title>Variable Generation Power Forecasting as a Big Data Problem</title><author>Haupt, Sue Ellen ; Kosovic, Branko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-68a150841bf6cba08c5a449bc0b6a98272e563739d40f4f5722445a09f191de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big data</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>Mathematical model</topic><topic>power forecasting</topic><topic>Real-time systems</topic><topic>SOLAR ENERGY</topic><topic>variable generation</topic><topic>WIND ENERGY</topic><topic>Wind forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, Sue Ellen</creatorcontrib><creatorcontrib>Kosovic, Branko</creatorcontrib><creatorcontrib>National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haupt, Sue Ellen</au><au>Kosovic, Branko</au><aucorp>National Center for Atmospheric Research (NCAR), Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Generation Power Forecasting as a Big Data Problem</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2017-04</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>725</spage><epage>732</epage><pages>725-732</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model and observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TSTE.2016.2604679</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2017-04, Vol.8 (2), p.725-732 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_ieee_primary_7587426 |
source | IEEE Electronic Library (IEL) |
subjects | Big data Computational modeling Data models ENERGY PLANNING, POLICY, AND ECONOMY Mathematical model power forecasting Real-time systems SOLAR ENERGY variable generation WIND ENERGY Wind forecasting |
title | Variable Generation Power Forecasting as a Big Data Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Generation%20Power%20Forecasting%20as%20a%20Big%20Data%20Problem&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Haupt,%20Sue%20Ellen&rft.aucorp=National%20Center%20for%20Atmospheric%20Research%20(NCAR),%20Boulder,%20CO%20(United%20States)&rft.date=2017-04&rft.volume=8&rft.issue=2&rft.spage=725&rft.epage=732&rft.pages=725-732&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2016.2604679&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSTE_2016_2604679%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7587426&rfr_iscdi=true |