Simulation of Single Particle Displacement Damage in Silicon - Part I: Global Approach and Primary Interaction Simulation

A comprehensive approach is developed for the simulation of Single Particle Displacement Damage in silicon, from the incident particle interaction in silicon, to the resulting electrical effect observed experimentally. The different steps of the global approach are described. The paper then focuses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2017-01, Vol.64 (1), p.133-140
Hauptverfasser: Raine, Melanie, Jay, Antoine, Richard, Nicolas, Goiffon, Vincent, Girard, Sylvain, Gaillardin, Marc, Paillet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1
container_start_page 133
container_title IEEE transactions on nuclear science
container_volume 64
creator Raine, Melanie
Jay, Antoine
Richard, Nicolas
Goiffon, Vincent
Girard, Sylvain
Gaillardin, Marc
Paillet, Philippe
description A comprehensive approach is developed for the simulation of Single Particle Displacement Damage in silicon, from the incident particle interaction in silicon, to the resulting electrical effect observed experimentally. The different steps of the global approach are described. The paper then focuses on the first step corresponding to Monte Carlo simulation of the primary interaction. The characteristics of the Primary Knock-On Atom (PKA) generated by neutron- or proton-silicon interactions for different energies are explored, analyzing in particular the PKA range in energies and species. This leads to the selection of 1 and 10 keV silicon atoms as good candidates to best represent the displacement cascades generated by all PKA. These PKA characteristics will be used as input in the following Molecular Dynamics simulation step, developed in a separate paper to simulate the displacement cascade generation and evolution. Monte Carlo simulations are also performed in a geometry representative of an image sensor, analyzing the distribution of non-ionizing deposited energy. The obtained distributions appear very similar for incident neutrons from 3 to 18 MeV and incident protons of 200 MeV, in agreement with similarities observed in experimentally measured dark current distributions in image sensors. The effect of geometric parameters on these distributions is finally explored.
doi_str_mv 10.1109/TNS.2016.2615133
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7582531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7582531</ieee_id><sourcerecordid>1875615038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-58533f9d3a6321b34416f21a24239f80d544cd7243b0facd9b414d1a6727a5b23</originalsourceid><addsrcrecordid>eNpFkUtPwzAQhC0EEuVxR-JiiROHFK8ficOtokArVVCp5WxtHAeM0iQkKVL_PW6D4GR79c3OroeQK2BjAJberV9WY84gHvMYFAhxREaglI5AJfqYjBgDHaUyTU_JWdd9hqdUTI3IbuU32xJ7X1e0LujKV--lo0tse2_DZeq7pkTrNq7q6RQ3-O6orwJWehsU0YGk83v6XNYZlnTSNG2N9oNildNl6zfY7ui86l2L9uDxb3dBTgosO3f5e56Tt6fH9cMsWrw-zx8mi8gqxfpIaSVEkeYCY8EhE1JCXHBALrlIC81yJaXNEy5Fxgq0eZpJkDlgnPAEVcbFObkd-n5gaZphJFOjN7PJwuxrDBTXEMtvCOzNwIYtvrau681nvW2rMJ4Bnajws0zoQLGBsm3dda0r_toCM_swTAjD7MMwv2EEyfUg8c65PzxRmisB4geOfIPK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875615038</pqid></control><display><type>article</type><title>Simulation of Single Particle Displacement Damage in Silicon - Part I: Global Approach and Primary Interaction Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Raine, Melanie ; Jay, Antoine ; Richard, Nicolas ; Goiffon, Vincent ; Girard, Sylvain ; Gaillardin, Marc ; Paillet, Philippe</creator><creatorcontrib>Raine, Melanie ; Jay, Antoine ; Richard, Nicolas ; Goiffon, Vincent ; Girard, Sylvain ; Gaillardin, Marc ; Paillet, Philippe</creatorcontrib><description>A comprehensive approach is developed for the simulation of Single Particle Displacement Damage in silicon, from the incident particle interaction in silicon, to the resulting electrical effect observed experimentally. The different steps of the global approach are described. The paper then focuses on the first step corresponding to Monte Carlo simulation of the primary interaction. The characteristics of the Primary Knock-On Atom (PKA) generated by neutron- or proton-silicon interactions for different energies are explored, analyzing in particular the PKA range in energies and species. This leads to the selection of 1 and 10 keV silicon atoms as good candidates to best represent the displacement cascades generated by all PKA. These PKA characteristics will be used as input in the following Molecular Dynamics simulation step, developed in a separate paper to simulate the displacement cascade generation and evolution. Monte Carlo simulations are also performed in a geometry representative of an image sensor, analyzing the distribution of non-ionizing deposited energy. The obtained distributions appear very similar for incident neutrons from 3 to 18 MeV and incident protons of 200 MeV, in agreement with similarities observed in experimentally measured dark current distributions in image sensors. The effect of geometric parameters on these distributions is finally explored.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2016.2615133</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active pixel sensor (APS) ; annealing ; CMOS image sensor (CIS) ; Dark current ; dark current distribution ; Geometry ; Image sensors ; Instrumentation and Detectors ; Molecular dynamics ; Monte Carlo methods ; Monte Carlo simulation ; Monte Carlo simulations ; Neutrons ; NIEL ; Nuclear Theory ; Physics ; PKA ; Protons ; Silicon ; Simulation ; single-particle displacement damage (SPDD)</subject><ispartof>IEEE transactions on nuclear science, 2017-01, Vol.64 (1), p.133-140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-58533f9d3a6321b34416f21a24239f80d544cd7243b0facd9b414d1a6727a5b23</citedby><cites>FETCH-LOGICAL-c550t-58533f9d3a6321b34416f21a24239f80d544cd7243b0facd9b414d1a6727a5b23</cites><orcidid>0000-0001-8701-7283 ; 0000-0002-0361-5866 ; 0000-0002-9804-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7582531$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7582531$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01528164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raine, Melanie</creatorcontrib><creatorcontrib>Jay, Antoine</creatorcontrib><creatorcontrib>Richard, Nicolas</creatorcontrib><creatorcontrib>Goiffon, Vincent</creatorcontrib><creatorcontrib>Girard, Sylvain</creatorcontrib><creatorcontrib>Gaillardin, Marc</creatorcontrib><creatorcontrib>Paillet, Philippe</creatorcontrib><title>Simulation of Single Particle Displacement Damage in Silicon - Part I: Global Approach and Primary Interaction Simulation</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A comprehensive approach is developed for the simulation of Single Particle Displacement Damage in silicon, from the incident particle interaction in silicon, to the resulting electrical effect observed experimentally. The different steps of the global approach are described. The paper then focuses on the first step corresponding to Monte Carlo simulation of the primary interaction. The characteristics of the Primary Knock-On Atom (PKA) generated by neutron- or proton-silicon interactions for different energies are explored, analyzing in particular the PKA range in energies and species. This leads to the selection of 1 and 10 keV silicon atoms as good candidates to best represent the displacement cascades generated by all PKA. These PKA characteristics will be used as input in the following Molecular Dynamics simulation step, developed in a separate paper to simulate the displacement cascade generation and evolution. Monte Carlo simulations are also performed in a geometry representative of an image sensor, analyzing the distribution of non-ionizing deposited energy. The obtained distributions appear very similar for incident neutrons from 3 to 18 MeV and incident protons of 200 MeV, in agreement with similarities observed in experimentally measured dark current distributions in image sensors. The effect of geometric parameters on these distributions is finally explored.</description><subject>Active pixel sensor (APS)</subject><subject>annealing</subject><subject>CMOS image sensor (CIS)</subject><subject>Dark current</subject><subject>dark current distribution</subject><subject>Geometry</subject><subject>Image sensors</subject><subject>Instrumentation and Detectors</subject><subject>Molecular dynamics</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Monte Carlo simulations</subject><subject>Neutrons</subject><subject>NIEL</subject><subject>Nuclear Theory</subject><subject>Physics</subject><subject>PKA</subject><subject>Protons</subject><subject>Silicon</subject><subject>Simulation</subject><subject>single-particle displacement damage (SPDD)</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkUtPwzAQhC0EEuVxR-JiiROHFK8ficOtokArVVCp5WxtHAeM0iQkKVL_PW6D4GR79c3OroeQK2BjAJberV9WY84gHvMYFAhxREaglI5AJfqYjBgDHaUyTU_JWdd9hqdUTI3IbuU32xJ7X1e0LujKV--lo0tse2_DZeq7pkTrNq7q6RQ3-O6orwJWehsU0YGk83v6XNYZlnTSNG2N9oNildNl6zfY7ui86l2L9uDxb3dBTgosO3f5e56Tt6fH9cMsWrw-zx8mi8gqxfpIaSVEkeYCY8EhE1JCXHBALrlIC81yJaXNEy5Fxgq0eZpJkDlgnPAEVcbFObkd-n5gaZphJFOjN7PJwuxrDBTXEMtvCOzNwIYtvrau681nvW2rMJ4Bnajws0zoQLGBsm3dda0r_toCM_swTAjD7MMwv2EEyfUg8c65PzxRmisB4geOfIPK</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Raine, Melanie</creator><creator>Jay, Antoine</creator><creator>Richard, Nicolas</creator><creator>Goiffon, Vincent</creator><creator>Girard, Sylvain</creator><creator>Gaillardin, Marc</creator><creator>Paillet, Philippe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0002-0361-5866</orcidid><orcidid>https://orcid.org/0000-0002-9804-8971</orcidid></search><sort><creationdate>20170101</creationdate><title>Simulation of Single Particle Displacement Damage in Silicon - Part I: Global Approach and Primary Interaction Simulation</title><author>Raine, Melanie ; Jay, Antoine ; Richard, Nicolas ; Goiffon, Vincent ; Girard, Sylvain ; Gaillardin, Marc ; Paillet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-58533f9d3a6321b34416f21a24239f80d544cd7243b0facd9b414d1a6727a5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active pixel sensor (APS)</topic><topic>annealing</topic><topic>CMOS image sensor (CIS)</topic><topic>Dark current</topic><topic>dark current distribution</topic><topic>Geometry</topic><topic>Image sensors</topic><topic>Instrumentation and Detectors</topic><topic>Molecular dynamics</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Monte Carlo simulations</topic><topic>Neutrons</topic><topic>NIEL</topic><topic>Nuclear Theory</topic><topic>Physics</topic><topic>PKA</topic><topic>Protons</topic><topic>Silicon</topic><topic>Simulation</topic><topic>single-particle displacement damage (SPDD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raine, Melanie</creatorcontrib><creatorcontrib>Jay, Antoine</creatorcontrib><creatorcontrib>Richard, Nicolas</creatorcontrib><creatorcontrib>Goiffon, Vincent</creatorcontrib><creatorcontrib>Girard, Sylvain</creatorcontrib><creatorcontrib>Gaillardin, Marc</creatorcontrib><creatorcontrib>Paillet, Philippe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raine, Melanie</au><au>Jay, Antoine</au><au>Richard, Nicolas</au><au>Goiffon, Vincent</au><au>Girard, Sylvain</au><au>Gaillardin, Marc</au><au>Paillet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Single Particle Displacement Damage in Silicon - Part I: Global Approach and Primary Interaction Simulation</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>64</volume><issue>1</issue><spage>133</spage><epage>140</epage><pages>133-140</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A comprehensive approach is developed for the simulation of Single Particle Displacement Damage in silicon, from the incident particle interaction in silicon, to the resulting electrical effect observed experimentally. The different steps of the global approach are described. The paper then focuses on the first step corresponding to Monte Carlo simulation of the primary interaction. The characteristics of the Primary Knock-On Atom (PKA) generated by neutron- or proton-silicon interactions for different energies are explored, analyzing in particular the PKA range in energies and species. This leads to the selection of 1 and 10 keV silicon atoms as good candidates to best represent the displacement cascades generated by all PKA. These PKA characteristics will be used as input in the following Molecular Dynamics simulation step, developed in a separate paper to simulate the displacement cascade generation and evolution. Monte Carlo simulations are also performed in a geometry representative of an image sensor, analyzing the distribution of non-ionizing deposited energy. The obtained distributions appear very similar for incident neutrons from 3 to 18 MeV and incident protons of 200 MeV, in agreement with similarities observed in experimentally measured dark current distributions in image sensors. The effect of geometric parameters on these distributions is finally explored.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2016.2615133</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0002-0361-5866</orcidid><orcidid>https://orcid.org/0000-0002-9804-8971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2017-01, Vol.64 (1), p.133-140
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_7582531
source IEEE Electronic Library (IEL)
subjects Active pixel sensor (APS)
annealing
CMOS image sensor (CIS)
Dark current
dark current distribution
Geometry
Image sensors
Instrumentation and Detectors
Molecular dynamics
Monte Carlo methods
Monte Carlo simulation
Monte Carlo simulations
Neutrons
NIEL
Nuclear Theory
Physics
PKA
Protons
Silicon
Simulation
single-particle displacement damage (SPDD)
title Simulation of Single Particle Displacement Damage in Silicon - Part I: Global Approach and Primary Interaction Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Single%20Particle%20Displacement%20Damage%20in%20Silicon%20-%20Part%20I:%20Global%20Approach%20and%20Primary%20Interaction%20Simulation&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Raine,%20Melanie&rft.date=2017-01-01&rft.volume=64&rft.issue=1&rft.spage=133&rft.epage=140&rft.pages=133-140&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2016.2615133&rft_dat=%3Cproquest_RIE%3E1875615038%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875615038&rft_id=info:pmid/&rft_ieee_id=7582531&rfr_iscdi=true