Robust Sparse Signal Recovery in the Presence of the S \alphaS Noise

In this letter, robust sparse signal recovery is considered in the presence of the symmetric α-stable distributed noise. An M-estimate type model is constructed by approximating the location score function of the noise. A reweighed iterative hard thresholding algorithm is proposed to recover the spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-11, Vol.23 (11), p.1687-1691
Hauptverfasser: Hu, Rui, Fu, Yuli, Chen, Zhen, Xiang, Youjun, Rong, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1691
container_issue 11
container_start_page 1687
container_title IEEE signal processing letters
container_volume 23
creator Hu, Rui
Fu, Yuli
Chen, Zhen
Xiang, Youjun
Rong, Rong
description In this letter, robust sparse signal recovery is considered in the presence of the symmetric α-stable distributed noise. An M-estimate type model is constructed by approximating the location score function of the noise. A reweighed iterative hard thresholding algorithm is proposed to recover the sparse signal. The basis functions for the approximation and the recovery performance of the proposed algorithm are discussed. Simulations are given to demonstrate the validity of our results.
doi_str_mv 10.1109/LSP.2016.2614983
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_7582482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7582482</ieee_id><sourcerecordid>7582482</sourcerecordid><originalsourceid>FETCH-ieee_primary_75824823</originalsourceid><addsrcrecordid>eNp9ickKwjAUAIMoWJe74OX9QOtLupieXfAgUhqPgkR51UhtS1IF_14Rz55mhmFswjHgHNPZVmWBQJ4EIuFRKsMO83gcS1-ECe9-HOfopynKPhs4d0NEyWXssWVenx6uBdVo6wiUuVS6hJzO9ZPsC0wF7ZUgs-SoOhPUxbcVHHTZXLWCXW0cjViv0KWj8Y9DNl2v9ouNb4jo2Fhz1_Z1nMdSRFKE_-8bAYA6Bw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust Sparse Signal Recovery in the Presence of the S \alphaS Noise</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Rui ; Fu, Yuli ; Chen, Zhen ; Xiang, Youjun ; Rong, Rong</creator><creatorcontrib>Hu, Rui ; Fu, Yuli ; Chen, Zhen ; Xiang, Youjun ; Rong, Rong</creatorcontrib><description>In this letter, robust sparse signal recovery is considered in the presence of the symmetric α-stable distributed noise. An M-estimate type model is constructed by approximating the location score function of the noise. A reweighed iterative hard thresholding algorithm is proposed to recover the sparse signal. The basis functions for the approximation and the recovery performance of the proposed algorithm are discussed. Simulations are given to demonstrate the validity of our results.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2614983</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Iterative algorithms ; Iterative hard thresholding (IHT) ; Linear programming ; M-estimate ; Noise measurement ; Sensors ; Signal processing algorithms ; Sparse matrices ; sparse signal recovery ; symmetric alpha -stable (S alphaS) noise</subject><ispartof>IEEE signal processing letters, 2016-11, Vol.23 (11), p.1687-1691</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7582482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7582482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Fu, Yuli</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Xiang, Youjun</creatorcontrib><creatorcontrib>Rong, Rong</creatorcontrib><title>Robust Sparse Signal Recovery in the Presence of the S \alphaS Noise</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, robust sparse signal recovery is considered in the presence of the symmetric α-stable distributed noise. An M-estimate type model is constructed by approximating the location score function of the noise. A reweighed iterative hard thresholding algorithm is proposed to recover the sparse signal. The basis functions for the approximation and the recovery performance of the proposed algorithm are discussed. Simulations are given to demonstrate the validity of our results.</description><subject>Approximation algorithms</subject><subject>Iterative algorithms</subject><subject>Iterative hard thresholding (IHT)</subject><subject>Linear programming</subject><subject>M-estimate</subject><subject>Noise measurement</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>Sparse matrices</subject><subject>sparse signal recovery</subject><subject>symmetric alpha -stable (S alphaS) noise</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9ickKwjAUAIMoWJe74OX9QOtLupieXfAgUhqPgkR51UhtS1IF_14Rz55mhmFswjHgHNPZVmWBQJ4EIuFRKsMO83gcS1-ECe9-HOfopynKPhs4d0NEyWXssWVenx6uBdVo6wiUuVS6hJzO9ZPsC0wF7ZUgs-SoOhPUxbcVHHTZXLWCXW0cjViv0KWj8Y9DNl2v9ouNb4jo2Fhz1_Z1nMdSRFKE_-8bAYA6Bw</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Hu, Rui</creator><creator>Fu, Yuli</creator><creator>Chen, Zhen</creator><creator>Xiang, Youjun</creator><creator>Rong, Rong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>201611</creationdate><title>Robust Sparse Signal Recovery in the Presence of the S \alphaS Noise</title><author>Hu, Rui ; Fu, Yuli ; Chen, Zhen ; Xiang, Youjun ; Rong, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_75824823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation algorithms</topic><topic>Iterative algorithms</topic><topic>Iterative hard thresholding (IHT)</topic><topic>Linear programming</topic><topic>M-estimate</topic><topic>Noise measurement</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>Sparse matrices</topic><topic>sparse signal recovery</topic><topic>symmetric alpha -stable (S alphaS) noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Fu, Yuli</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Xiang, Youjun</creatorcontrib><creatorcontrib>Rong, Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Rui</au><au>Fu, Yuli</au><au>Chen, Zhen</au><au>Xiang, Youjun</au><au>Rong, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Sparse Signal Recovery in the Presence of the S \alphaS Noise</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-11</date><risdate>2016</risdate><volume>23</volume><issue>11</issue><spage>1687</spage><epage>1691</epage><pages>1687-1691</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, robust sparse signal recovery is considered in the presence of the symmetric α-stable distributed noise. An M-estimate type model is constructed by approximating the location score function of the noise. A reweighed iterative hard thresholding algorithm is proposed to recover the sparse signal. The basis functions for the approximation and the recovery performance of the proposed algorithm are discussed. Simulations are given to demonstrate the validity of our results.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2016.2614983</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2016-11, Vol.23 (11), p.1687-1691
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_7582482
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Iterative algorithms
Iterative hard thresholding (IHT)
Linear programming
M-estimate
Noise measurement
Sensors
Signal processing algorithms
Sparse matrices
sparse signal recovery
symmetric alpha -stable (S alphaS) noise
title Robust Sparse Signal Recovery in the Presence of the S \alphaS Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Sparse%20Signal%20Recovery%20in%20the%20Presence%20of%20the%20S%20%5CalphaS%20Noise&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Hu,%20Rui&rft.date=2016-11&rft.volume=23&rft.issue=11&rft.spage=1687&rft.epage=1691&rft.pages=1687-1691&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2614983&rft_dat=%3Cieee_RIE%3E7582482%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7582482&rfr_iscdi=true