Distributed and Robust Fair Optimization Applied to Virus Diffusion Control

This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering 2017-01, Vol.4 (1), p.41-54
Hauptverfasser: Ramirez-Llanos, Eduardo, Martinez, Sonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 41
container_title IEEE transactions on network science and engineering
container_volume 4
creator Ramirez-Llanos, Eduardo
Martinez, Sonia
description This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.
doi_str_mv 10.1109/TNSE.2016.2614751
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7580655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7580655</ieee_id><sourcerecordid>10_1109_TNSE_2016_2614751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</originalsourceid><addsrcrecordid>eNo9kMtKAzEYhYMoWGofQNzkBabmflmWXqxYLGgVd0NmkkBk2hmSzEKf3hlaXP0H_nMOhw-Ae4zmGCP9eHh9X88JwmJOBGaS4yswIZSyghL9dT1qIgsmtLwFs5S-EUKYKEEpnYCXVUg5hqrPzkJzsvCtrfqU4caECPddDsfwa3JoT3DRdU0YTLmFnyH2Ca6C930aX8v2lGPb3IEbb5rkZpc7BR-b9WG5LXb7p-flYlfUlPJceMQ5UbRyGnnBak28rT2iatgta14x7p2thZPcS2MrpbTFzFklOPPIaEbpFOBzbx3blKLzZRfD0cSfEqNyBFKOQMoRSHkBMmQezpngnPv3S66Q4Jz-AS2WXR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</title><source>IEEE Electronic Library (IEL)</source><creator>Ramirez-Llanos, Eduardo ; Martinez, Sonia</creator><creatorcontrib>Ramirez-Llanos, Eduardo ; Martinez, Sonia</creatorcontrib><description>This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2016.2614751</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Convergence ; cooperative control ; distributed optimization and learning ; Heuristic algorithms ; Minimization ; Multi-agent systems ; Optimization ; Resource management ; Robustness ; virus spread control</subject><ispartof>IEEE transactions on network science and engineering, 2017-01, Vol.4 (1), p.41-54</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</citedby><cites>FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7580655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7580655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez-Llanos, Eduardo</creatorcontrib><creatorcontrib>Martinez, Sonia</creatorcontrib><title>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.</description><subject>Algorithm design and analysis</subject><subject>Convergence</subject><subject>cooperative control</subject><subject>distributed optimization and learning</subject><subject>Heuristic algorithms</subject><subject>Minimization</subject><subject>Multi-agent systems</subject><subject>Optimization</subject><subject>Resource management</subject><subject>Robustness</subject><subject>virus spread control</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEYhYMoWGofQNzkBabmflmWXqxYLGgVd0NmkkBk2hmSzEKf3hlaXP0H_nMOhw-Ae4zmGCP9eHh9X88JwmJOBGaS4yswIZSyghL9dT1qIgsmtLwFs5S-EUKYKEEpnYCXVUg5hqrPzkJzsvCtrfqU4caECPddDsfwa3JoT3DRdU0YTLmFnyH2Ca6C930aX8v2lGPb3IEbb5rkZpc7BR-b9WG5LXb7p-flYlfUlPJceMQ5UbRyGnnBak28rT2iatgta14x7p2thZPcS2MrpbTFzFklOPPIaEbpFOBzbx3blKLzZRfD0cSfEqNyBFKOQMoRSHkBMmQezpngnPv3S66Q4Jz-AS2WXR4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ramirez-Llanos, Eduardo</creator><creator>Martinez, Sonia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</title><author>Ramirez-Llanos, Eduardo ; Martinez, Sonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Convergence</topic><topic>cooperative control</topic><topic>distributed optimization and learning</topic><topic>Heuristic algorithms</topic><topic>Minimization</topic><topic>Multi-agent systems</topic><topic>Optimization</topic><topic>Resource management</topic><topic>Robustness</topic><topic>virus spread control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Llanos, Eduardo</creatorcontrib><creatorcontrib>Martinez, Sonia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez-Llanos, Eduardo</au><au>Martinez, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>41</spage><epage>54</epage><pages>41-54</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.</abstract><pub>IEEE</pub><doi>10.1109/TNSE.2016.2614751</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2017-01, Vol.4 (1), p.41-54
issn 2327-4697
2334-329X
language eng
recordid cdi_ieee_primary_7580655
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Convergence
cooperative control
distributed optimization and learning
Heuristic algorithms
Minimization
Multi-agent systems
Optimization
Resource management
Robustness
virus spread control
title Distributed and Robust Fair Optimization Applied to Virus Diffusion Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20and%20Robust%20Fair%20Optimization%20Applied%20to%20Virus%20Diffusion%20Control&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Ramirez-Llanos,%20Eduardo&rft.date=2017-01-01&rft.volume=4&rft.issue=1&rft.spage=41&rft.epage=54&rft.pages=41-54&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2016.2614751&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSE_2016_2614751%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7580655&rfr_iscdi=true