Distributed and Robust Fair Optimization Applied to Virus Diffusion Control
This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on network science and engineering 2017-01, Vol.4 (1), p.41-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | IEEE transactions on network science and engineering |
container_volume | 4 |
creator | Ramirez-Llanos, Eduardo Martinez, Sonia |
description | This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense. |
doi_str_mv | 10.1109/TNSE.2016.2614751 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7580655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7580655</ieee_id><sourcerecordid>10_1109_TNSE_2016_2614751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</originalsourceid><addsrcrecordid>eNo9kMtKAzEYhYMoWGofQNzkBabmflmWXqxYLGgVd0NmkkBk2hmSzEKf3hlaXP0H_nMOhw-Ae4zmGCP9eHh9X88JwmJOBGaS4yswIZSyghL9dT1qIgsmtLwFs5S-EUKYKEEpnYCXVUg5hqrPzkJzsvCtrfqU4caECPddDsfwa3JoT3DRdU0YTLmFnyH2Ca6C930aX8v2lGPb3IEbb5rkZpc7BR-b9WG5LXb7p-flYlfUlPJceMQ5UbRyGnnBak28rT2iatgta14x7p2thZPcS2MrpbTFzFklOPPIaEbpFOBzbx3blKLzZRfD0cSfEqNyBFKOQMoRSHkBMmQezpngnPv3S66Q4Jz-AS2WXR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</title><source>IEEE Electronic Library (IEL)</source><creator>Ramirez-Llanos, Eduardo ; Martinez, Sonia</creator><creatorcontrib>Ramirez-Llanos, Eduardo ; Martinez, Sonia</creatorcontrib><description>This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2016.2614751</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Convergence ; cooperative control ; distributed optimization and learning ; Heuristic algorithms ; Minimization ; Multi-agent systems ; Optimization ; Resource management ; Robustness ; virus spread control</subject><ispartof>IEEE transactions on network science and engineering, 2017-01, Vol.4 (1), p.41-54</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</citedby><cites>FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7580655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7580655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez-Llanos, Eduardo</creatorcontrib><creatorcontrib>Martinez, Sonia</creatorcontrib><title>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.</description><subject>Algorithm design and analysis</subject><subject>Convergence</subject><subject>cooperative control</subject><subject>distributed optimization and learning</subject><subject>Heuristic algorithms</subject><subject>Minimization</subject><subject>Multi-agent systems</subject><subject>Optimization</subject><subject>Resource management</subject><subject>Robustness</subject><subject>virus spread control</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEYhYMoWGofQNzkBabmflmWXqxYLGgVd0NmkkBk2hmSzEKf3hlaXP0H_nMOhw-Ae4zmGCP9eHh9X88JwmJOBGaS4yswIZSyghL9dT1qIgsmtLwFs5S-EUKYKEEpnYCXVUg5hqrPzkJzsvCtrfqU4caECPddDsfwa3JoT3DRdU0YTLmFnyH2Ca6C930aX8v2lGPb3IEbb5rkZpc7BR-b9WG5LXb7p-flYlfUlPJceMQ5UbRyGnnBak28rT2iatgta14x7p2thZPcS2MrpbTFzFklOPPIaEbpFOBzbx3blKLzZRfD0cSfEqNyBFKOQMoRSHkBMmQezpngnPv3S66Q4Jz-AS2WXR4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ramirez-Llanos, Eduardo</creator><creator>Martinez, Sonia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</title><author>Ramirez-Llanos, Eduardo ; Martinez, Sonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f055283be90f64c92fdcf0387517c5b45fedc6e75f7adb889d14ed8654f0a9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Convergence</topic><topic>cooperative control</topic><topic>distributed optimization and learning</topic><topic>Heuristic algorithms</topic><topic>Minimization</topic><topic>Multi-agent systems</topic><topic>Optimization</topic><topic>Resource management</topic><topic>Robustness</topic><topic>virus spread control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Llanos, Eduardo</creatorcontrib><creatorcontrib>Martinez, Sonia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez-Llanos, Eduardo</au><au>Martinez, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed and Robust Fair Optimization Applied to Virus Diffusion Control</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>41</spage><epage>54</epage><pages>41-54</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>This paper proposes three novel nonlinear, continuous-time, distributed algorithms to solve a class of fair resource allocation problems, which allow an interconnected group of operators to collectively minimize a global cost function subject to equality and inequality constraints. The proposed algorithms are designed to be robust so that temporary errors in communication or computation do not change their convergence to the equilibrium, and therefore, operators do not require global knowledge of the total resources in the network nor any specific initialization procedure. To analyze convergence of the algorithms, we use nonlinear analysis tools that exploit partial stability theory and nonsmooth Lyapunov analysis. We illustrate the applicability of our approach in connection to problems of virus spread minimization over computer and public networks. In simulation examples associated with virus spread minimization, we show that the virus elimination algorithms are asymptotically convergent and robust in the proposed sense.</abstract><pub>IEEE</pub><doi>10.1109/TNSE.2016.2614751</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2017-01, Vol.4 (1), p.41-54 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_ieee_primary_7580655 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Convergence cooperative control distributed optimization and learning Heuristic algorithms Minimization Multi-agent systems Optimization Resource management Robustness virus spread control |
title | Distributed and Robust Fair Optimization Applied to Virus Diffusion Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20and%20Robust%20Fair%20Optimization%20Applied%20to%20Virus%20Diffusion%20Control&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Ramirez-Llanos,%20Eduardo&rft.date=2017-01-01&rft.volume=4&rft.issue=1&rft.spage=41&rft.epage=54&rft.pages=41-54&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2016.2614751&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSE_2016_2614751%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7580655&rfr_iscdi=true |