C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data

The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2017-05, Vol.32 (3), p.2382-2393
Hauptverfasser: Mingyang Sun, Konstantelos, Ioannis, Strbac, Goran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2393
container_issue 3
container_start_page 2382
container_title IEEE transactions on power systems
container_volume 32
creator Mingyang Sun
Konstantelos, Ioannis
Strbac, Goran
description The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.
doi_str_mv 10.1109/TPWRS.2016.2614366
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7579208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7579208</ieee_id><sourcerecordid>1891108623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfeJGuaPEr9CxPHnPOxZOmtZNRmpinotzdz4tM9cM65B36EnDOYMAb6ajl_W7xMODA54ZJNhZQHZMTyXGUgC31IRqBUnimdwzE56fsNAMhkjMiqzFauQ1r67dAa-uS-4hCQPvkaW9r4QMt26CMG171T39AF9q7GLjrT0tsWbQzOJjnzpqZzE1OwozcmmlNy1Ji2x7O_Oyavd7fL8iGbPd8_ltezzAqhY8YtAFMMmWqgbqxioqhzBIlaFdY0VhSSrbVQogGb_LWwwKcqR8lZsc4LLcbkcv93G_zngH2sNn4IXZqsmNIJjZJcpBTfp2zwfR-wqbbBfZjwXTGodvyqX37Vjl_1xy-VLvYlh4j_hSKtclDiBzx7a44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891108623</pqid></control><display><type>article</type><title>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</title><source>IEEE Electronic Library (IEL)</source><creator>Mingyang Sun ; Konstantelos, Ioannis ; Strbac, Goran</creator><creatorcontrib>Mingyang Sun ; Konstantelos, Ioannis ; Strbac, Goran</creatorcontrib><description>The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2016.2614366</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>C-vine ; Clustering ; Clustering algorithms ; customer classification ; Data models ; Decision analysis ; decision trees ; Density functional theory ; Distribution functions ; Electric utilities ; Electricity consumption ; Electricity meters ; Hidden Markov models ; Households ; Load modeling ; Measuring instruments ; Mixture models ; pair-copula construction ; Partitioning ; Performance prediction ; smart meters</subject><ispartof>IEEE transactions on power systems, 2017-05, Vol.32 (3), p.2382-2393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</citedby><cites>FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7579208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7579208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mingyang Sun</creatorcontrib><creatorcontrib>Konstantelos, Ioannis</creatorcontrib><creatorcontrib>Strbac, Goran</creatorcontrib><title>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.</description><subject>C-vine</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>customer classification</subject><subject>Data models</subject><subject>Decision analysis</subject><subject>decision trees</subject><subject>Density functional theory</subject><subject>Distribution functions</subject><subject>Electric utilities</subject><subject>Electricity consumption</subject><subject>Electricity meters</subject><subject>Hidden Markov models</subject><subject>Households</subject><subject>Load modeling</subject><subject>Measuring instruments</subject><subject>Mixture models</subject><subject>pair-copula construction</subject><subject>Partitioning</subject><subject>Performance prediction</subject><subject>smart meters</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfeJGuaPEr9CxPHnPOxZOmtZNRmpinotzdz4tM9cM65B36EnDOYMAb6ajl_W7xMODA54ZJNhZQHZMTyXGUgC31IRqBUnimdwzE56fsNAMhkjMiqzFauQ1r67dAa-uS-4hCQPvkaW9r4QMt26CMG171T39AF9q7GLjrT0tsWbQzOJjnzpqZzE1OwozcmmlNy1Ji2x7O_Oyavd7fL8iGbPd8_ltezzAqhY8YtAFMMmWqgbqxioqhzBIlaFdY0VhSSrbVQogGb_LWwwKcqR8lZsc4LLcbkcv93G_zngH2sNn4IXZqsmNIJjZJcpBTfp2zwfR-wqbbBfZjwXTGodvyqX37Vjl_1xy-VLvYlh4j_hSKtclDiBzx7a44</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Mingyang Sun</creator><creator>Konstantelos, Ioannis</creator><creator>Strbac, Goran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</title><author>Mingyang Sun ; Konstantelos, Ioannis ; Strbac, Goran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>C-vine</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>customer classification</topic><topic>Data models</topic><topic>Decision analysis</topic><topic>decision trees</topic><topic>Density functional theory</topic><topic>Distribution functions</topic><topic>Electric utilities</topic><topic>Electricity consumption</topic><topic>Electricity meters</topic><topic>Hidden Markov models</topic><topic>Households</topic><topic>Load modeling</topic><topic>Measuring instruments</topic><topic>Mixture models</topic><topic>pair-copula construction</topic><topic>Partitioning</topic><topic>Performance prediction</topic><topic>smart meters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingyang Sun</creatorcontrib><creatorcontrib>Konstantelos, Ioannis</creatorcontrib><creatorcontrib>Strbac, Goran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mingyang Sun</au><au>Konstantelos, Ioannis</au><au>Strbac, Goran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2017-05</date><risdate>2017</risdate><volume>32</volume><issue>3</issue><spage>2382</spage><epage>2393</epage><pages>2382-2393</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2016.2614366</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2017-05, Vol.32 (3), p.2382-2393
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_7579208
source IEEE Electronic Library (IEL)
subjects C-vine
Clustering
Clustering algorithms
customer classification
Data models
Decision analysis
decision trees
Density functional theory
Distribution functions
Electric utilities
Electricity consumption
Electricity meters
Hidden Markov models
Households
Load modeling
Measuring instruments
Mixture models
pair-copula construction
Partitioning
Performance prediction
smart meters
title C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-Vine%20Copula%20Mixture%20Model%20for%20Clustering%20of%20Residential%20Electrical%20Load%20Pattern%20Data&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mingyang%20Sun&rft.date=2017-05&rft.volume=32&rft.issue=3&rft.spage=2382&rft.epage=2393&rft.pages=2382-2393&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2016.2614366&rft_dat=%3Cproquest_RIE%3E1891108623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891108623&rft_id=info:pmid/&rft_ieee_id=7579208&rfr_iscdi=true