C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data
The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, v...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2017-05, Vol.32 (3), p.2382-2393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2393 |
---|---|
container_issue | 3 |
container_start_page | 2382 |
container_title | IEEE transactions on power systems |
container_volume | 32 |
creator | Mingyang Sun Konstantelos, Ioannis Strbac, Goran |
description | The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method. |
doi_str_mv | 10.1109/TPWRS.2016.2614366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7579208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7579208</ieee_id><sourcerecordid>1891108623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfeJGuaPEr9CxPHnPOxZOmtZNRmpinotzdz4tM9cM65B36EnDOYMAb6ajl_W7xMODA54ZJNhZQHZMTyXGUgC31IRqBUnimdwzE56fsNAMhkjMiqzFauQ1r67dAa-uS-4hCQPvkaW9r4QMt26CMG171T39AF9q7GLjrT0tsWbQzOJjnzpqZzE1OwozcmmlNy1Ji2x7O_Oyavd7fL8iGbPd8_ltezzAqhY8YtAFMMmWqgbqxioqhzBIlaFdY0VhSSrbVQogGb_LWwwKcqR8lZsc4LLcbkcv93G_zngH2sNn4IXZqsmNIJjZJcpBTfp2zwfR-wqbbBfZjwXTGodvyqX37Vjl_1xy-VLvYlh4j_hSKtclDiBzx7a44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891108623</pqid></control><display><type>article</type><title>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</title><source>IEEE Electronic Library (IEL)</source><creator>Mingyang Sun ; Konstantelos, Ioannis ; Strbac, Goran</creator><creatorcontrib>Mingyang Sun ; Konstantelos, Ioannis ; Strbac, Goran</creatorcontrib><description>The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2016.2614366</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>C-vine ; Clustering ; Clustering algorithms ; customer classification ; Data models ; Decision analysis ; decision trees ; Density functional theory ; Distribution functions ; Electric utilities ; Electricity consumption ; Electricity meters ; Hidden Markov models ; Households ; Load modeling ; Measuring instruments ; Mixture models ; pair-copula construction ; Partitioning ; Performance prediction ; smart meters</subject><ispartof>IEEE transactions on power systems, 2017-05, Vol.32 (3), p.2382-2393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</citedby><cites>FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7579208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7579208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mingyang Sun</creatorcontrib><creatorcontrib>Konstantelos, Ioannis</creatorcontrib><creatorcontrib>Strbac, Goran</creatorcontrib><title>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.</description><subject>C-vine</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>customer classification</subject><subject>Data models</subject><subject>Decision analysis</subject><subject>decision trees</subject><subject>Density functional theory</subject><subject>Distribution functions</subject><subject>Electric utilities</subject><subject>Electricity consumption</subject><subject>Electricity meters</subject><subject>Hidden Markov models</subject><subject>Households</subject><subject>Load modeling</subject><subject>Measuring instruments</subject><subject>Mixture models</subject><subject>pair-copula construction</subject><subject>Partitioning</subject><subject>Performance prediction</subject><subject>smart meters</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfeJGuaPEr9CxPHnPOxZOmtZNRmpinotzdz4tM9cM65B36EnDOYMAb6ajl_W7xMODA54ZJNhZQHZMTyXGUgC31IRqBUnimdwzE56fsNAMhkjMiqzFauQ1r67dAa-uS-4hCQPvkaW9r4QMt26CMG171T39AF9q7GLjrT0tsWbQzOJjnzpqZzE1OwozcmmlNy1Ji2x7O_Oyavd7fL8iGbPd8_ltezzAqhY8YtAFMMmWqgbqxioqhzBIlaFdY0VhSSrbVQogGb_LWwwKcqR8lZsc4LLcbkcv93G_zngH2sNn4IXZqsmNIJjZJcpBTfp2zwfR-wqbbBfZjwXTGodvyqX37Vjl_1xy-VLvYlh4j_hSKtclDiBzx7a44</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Mingyang Sun</creator><creator>Konstantelos, Ioannis</creator><creator>Strbac, Goran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</title><author>Mingyang Sun ; Konstantelos, Ioannis ; Strbac, Goran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2c00181e18f0dfc8137d5e06e987cafc3761b9383f0cdfcb3c02485e6217b5793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>C-vine</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>customer classification</topic><topic>Data models</topic><topic>Decision analysis</topic><topic>decision trees</topic><topic>Density functional theory</topic><topic>Distribution functions</topic><topic>Electric utilities</topic><topic>Electricity consumption</topic><topic>Electricity meters</topic><topic>Hidden Markov models</topic><topic>Households</topic><topic>Load modeling</topic><topic>Measuring instruments</topic><topic>Mixture models</topic><topic>pair-copula construction</topic><topic>Partitioning</topic><topic>Performance prediction</topic><topic>smart meters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingyang Sun</creatorcontrib><creatorcontrib>Konstantelos, Ioannis</creatorcontrib><creatorcontrib>Strbac, Goran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mingyang Sun</au><au>Konstantelos, Ioannis</au><au>Strbac, Goran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2017-05</date><risdate>2017</risdate><volume>32</volume><issue>3</issue><spage>2382</spage><epage>2393</epage><pages>2382-2393</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas toward identifying multidimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2016.2614366</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2017-05, Vol.32 (3), p.2382-2393 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_7579208 |
source | IEEE Electronic Library (IEL) |
subjects | C-vine Clustering Clustering algorithms customer classification Data models Decision analysis decision trees Density functional theory Distribution functions Electric utilities Electricity consumption Electricity meters Hidden Markov models Households Load modeling Measuring instruments Mixture models pair-copula construction Partitioning Performance prediction smart meters |
title | C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-Vine%20Copula%20Mixture%20Model%20for%20Clustering%20of%20Residential%20Electrical%20Load%20Pattern%20Data&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mingyang%20Sun&rft.date=2017-05&rft.volume=32&rft.issue=3&rft.spage=2382&rft.epage=2393&rft.pages=2382-2393&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2016.2614366&rft_dat=%3Cproquest_RIE%3E1891108623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891108623&rft_id=info:pmid/&rft_ieee_id=7579208&rfr_iscdi=true |