Introduction to the Issue on Advanced Signal Processing for Brain Networks
The 16 papers in this special section focused on advanced signal processing techniques for brain networks. Network models of the brain have become an important tool of modern neurosciences to study fundamental organizational principles of brain structure & function. Their connectivity is capture...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2016-10, Vol.10 (7), p.1131-1133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1133 |
---|---|
container_issue | 7 |
container_start_page | 1131 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 10 |
creator | Van De Ville, D. Jirsa, V. Strother, S. Richiardi, J. Zalesky, A. |
description | The 16 papers in this special section focused on advanced signal processing techniques for brain networks. Network models of the brain have become an important tool of modern neurosciences to study fundamental organizational principles of brain structure & function. Their connectivity is captured by the so-called connectome, the complete set of structural and functional links of the network. Advancing current methodology remains an important need in the field; e.g., increasing large-scale models; incorporating multimodal information in multiplex graph models; dealing with dynamical aspects of network models; and matching data-driven and theoretical models. These challenges form multiple opportunities to develop and adapt emerging signal processing theories and methods at the interface of graph theory, machine learning, applied statistics, simulation, and so on, to play a key role in analysis and modeling and to bring our understanding of brain networks to the next level for key applications in cognitive and clinical neurosciences, including brain-computer interfaces. |
doi_str_mv | 10.1109/JSTSP.2016.2602945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7575745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7575745</ieee_id><sourcerecordid>4223822291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-75dbcf2b4420c3432005bb8e6d05cb7ad1b1f836cf97b1577d96524f60c84a903</originalsourceid><addsrcrecordid>eNo9UF1PwjAUXYwmIvoH9KWJTz4M-7m2j0hUIERJwOem6zoY4orthvHfWxwh9-F-nXNy70mSWwQHCEH5OF0sF_MBhigb4AxiSdlZ0kOSohRSQc8PNcEpZYxcJlchbCBkPEO0l0wndeNd0ZqmcjVoHGjWFkxCaC2I_bDY69rYAiyqVa23YO6dsSFU9QqUzoMnr6savNnmx_nPcJ1clHob7M0x95OPl-flaJzO3l8no-EsNYSTJuWsyE2Jc0oxNIQSHG_Jc2GzAjKTc12gHJWCZKaUPEeM80JmDNMyg0ZQLSHpJw-d7lpv1c5XX9r_KqcrNR7O1GEGESUIS7FHEXvfYXfefbc2NGrjWh9fCQoJAqVggrCIwh3KeBeCt-VJFkF18Ff9-6sO_qqjv5F015Eqa-2JwFmMuP0DHKx1Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830985835</pqid></control><display><type>article</type><title>Introduction to the Issue on Advanced Signal Processing for Brain Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Van De Ville, D. ; Jirsa, V. ; Strother, S. ; Richiardi, J. ; Zalesky, A.</creator><creatorcontrib>Van De Ville, D. ; Jirsa, V. ; Strother, S. ; Richiardi, J. ; Zalesky, A.</creatorcontrib><description>The 16 papers in this special section focused on advanced signal processing techniques for brain networks. Network models of the brain have become an important tool of modern neurosciences to study fundamental organizational principles of brain structure & function. Their connectivity is captured by the so-called connectome, the complete set of structural and functional links of the network. Advancing current methodology remains an important need in the field; e.g., increasing large-scale models; incorporating multimodal information in multiplex graph models; dealing with dynamical aspects of network models; and matching data-driven and theoretical models. These challenges form multiple opportunities to develop and adapt emerging signal processing theories and methods at the interface of graph theory, machine learning, applied statistics, simulation, and so on, to play a key role in analysis and modeling and to bring our understanding of brain networks to the next level for key applications in cognitive and clinical neurosciences, including brain-computer interfaces.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2016.2602945</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Analytical models ; Biomedical signal processing ; Brain models ; Brain-computer interfaces ; Cognitive science ; Graph theory ; Machine learning ; Neuroscience ; Neurosciences ; Signal processing ; Special issues and sections ; Statistical analysis</subject><ispartof>IEEE journal of selected topics in signal processing, 2016-10, Vol.10 (7), p.1131-1133</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-75dbcf2b4420c3432005bb8e6d05cb7ad1b1f836cf97b1577d96524f60c84a903</citedby><orcidid>0000-0002-8251-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7575745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7575745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01431298$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Van De Ville, D.</creatorcontrib><creatorcontrib>Jirsa, V.</creatorcontrib><creatorcontrib>Strother, S.</creatorcontrib><creatorcontrib>Richiardi, J.</creatorcontrib><creatorcontrib>Zalesky, A.</creatorcontrib><title>Introduction to the Issue on Advanced Signal Processing for Brain Networks</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>The 16 papers in this special section focused on advanced signal processing techniques for brain networks. Network models of the brain have become an important tool of modern neurosciences to study fundamental organizational principles of brain structure & function. Their connectivity is captured by the so-called connectome, the complete set of structural and functional links of the network. Advancing current methodology remains an important need in the field; e.g., increasing large-scale models; incorporating multimodal information in multiplex graph models; dealing with dynamical aspects of network models; and matching data-driven and theoretical models. These challenges form multiple opportunities to develop and adapt emerging signal processing theories and methods at the interface of graph theory, machine learning, applied statistics, simulation, and so on, to play a key role in analysis and modeling and to bring our understanding of brain networks to the next level for key applications in cognitive and clinical neurosciences, including brain-computer interfaces.</description><subject>Adaptation models</subject><subject>Analytical models</subject><subject>Biomedical signal processing</subject><subject>Brain models</subject><subject>Brain-computer interfaces</subject><subject>Cognitive science</subject><subject>Graph theory</subject><subject>Machine learning</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Signal processing</subject><subject>Special issues and sections</subject><subject>Statistical analysis</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1PwjAUXYwmIvoH9KWJTz4M-7m2j0hUIERJwOem6zoY4orthvHfWxwh9-F-nXNy70mSWwQHCEH5OF0sF_MBhigb4AxiSdlZ0kOSohRSQc8PNcEpZYxcJlchbCBkPEO0l0wndeNd0ZqmcjVoHGjWFkxCaC2I_bDY69rYAiyqVa23YO6dsSFU9QqUzoMnr6savNnmx_nPcJ1clHob7M0x95OPl-flaJzO3l8no-EsNYSTJuWsyE2Jc0oxNIQSHG_Jc2GzAjKTc12gHJWCZKaUPEeM80JmDNMyg0ZQLSHpJw-d7lpv1c5XX9r_KqcrNR7O1GEGESUIS7FHEXvfYXfefbc2NGrjWh9fCQoJAqVggrCIwh3KeBeCt-VJFkF18Ff9-6sO_qqjv5F015Eqa-2JwFmMuP0DHKx1Lg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Van De Ville, D.</creator><creator>Jirsa, V.</creator><creator>Strother, S.</creator><creator>Richiardi, J.</creator><creator>Zalesky, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8251-8860</orcidid></search><sort><creationdate>20161001</creationdate><title>Introduction to the Issue on Advanced Signal Processing for Brain Networks</title><author>Van De Ville, D. ; Jirsa, V. ; Strother, S. ; Richiardi, J. ; Zalesky, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-75dbcf2b4420c3432005bb8e6d05cb7ad1b1f836cf97b1577d96524f60c84a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Analytical models</topic><topic>Biomedical signal processing</topic><topic>Brain models</topic><topic>Brain-computer interfaces</topic><topic>Cognitive science</topic><topic>Graph theory</topic><topic>Machine learning</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Signal processing</topic><topic>Special issues and sections</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van De Ville, D.</creatorcontrib><creatorcontrib>Jirsa, V.</creatorcontrib><creatorcontrib>Strother, S.</creatorcontrib><creatorcontrib>Richiardi, J.</creatorcontrib><creatorcontrib>Zalesky, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van De Ville, D.</au><au>Jirsa, V.</au><au>Strother, S.</au><au>Richiardi, J.</au><au>Zalesky, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the Issue on Advanced Signal Processing for Brain Networks</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>10</volume><issue>7</issue><spage>1131</spage><epage>1133</epage><pages>1131-1133</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>The 16 papers in this special section focused on advanced signal processing techniques for brain networks. Network models of the brain have become an important tool of modern neurosciences to study fundamental organizational principles of brain structure & function. Their connectivity is captured by the so-called connectome, the complete set of structural and functional links of the network. Advancing current methodology remains an important need in the field; e.g., increasing large-scale models; incorporating multimodal information in multiplex graph models; dealing with dynamical aspects of network models; and matching data-driven and theoretical models. These challenges form multiple opportunities to develop and adapt emerging signal processing theories and methods at the interface of graph theory, machine learning, applied statistics, simulation, and so on, to play a key role in analysis and modeling and to bring our understanding of brain networks to the next level for key applications in cognitive and clinical neurosciences, including brain-computer interfaces.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2016.2602945</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-8251-8860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2016-10, Vol.10 (7), p.1131-1133 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_ieee_primary_7575745 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Analytical models Biomedical signal processing Brain models Brain-computer interfaces Cognitive science Graph theory Machine learning Neuroscience Neurosciences Signal processing Special issues and sections Statistical analysis |
title | Introduction to the Issue on Advanced Signal Processing for Brain Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20Issue%20on%20Advanced%20Signal%20Processing%20for%20Brain%20Networks&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Van%20De%20Ville,%20D.&rft.date=2016-10-01&rft.volume=10&rft.issue=7&rft.spage=1131&rft.epage=1133&rft.pages=1131-1133&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2016.2602945&rft_dat=%3Cproquest_RIE%3E4223822291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830985835&rft_id=info:pmid/&rft_ieee_id=7575745&rfr_iscdi=true |