Wavelet-based deconvolution for ill-conditioned systems
In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-b...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3244 vol.6 |
---|---|
container_issue | |
container_start_page | 3241 |
container_title | |
container_volume | 6 |
creator | Neelamani, R. Choi, H. Baraniuk, R. |
description | In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-based approaches, however, we employ a regularized inverse filter, which allows the algorithm to operate even when the inverse system is ill-conditioned or non-invertible. Using a mean-square-error metric, we strike an optimal balance between Fourier-domain and wavelet-domain regularization. The result is a fast deconvolution algorithm ideally suited to signals and images with edges and other singularities. In simulations with real data, the algorithm outperforms the LTI Wiener filter and other wavelet-based deconvolution algorithms in terms of both visual quality and MSE performance. |
doi_str_mv | 10.1109/ICASSP.1999.757532 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_757532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>757532</ieee_id><sourcerecordid>757532</sourcerecordid><originalsourceid>FETCH-LOGICAL-i247t-d897b7602ce8e9e6589322a6c0f98d7df37aa7c8954ae8bcdab5919114edf4703</originalsourceid><addsrcrecordid>eNotj1tLw0AUhBcvYK39A33KH9h49paz51GKNygoVNG3ssmewEraSDYW-u-N1HkZ-BiGGSGWCkqlgG6fV3ebzWupiKhEh87oMzHTBkkqgs9zcQ3owTiwylyImXIaZKUsXYlFzl8wyToHaGYCP8KBOx5lHTLHInLT7w999zOmfl-0_VCkrpMTi-mPTIl8zCPv8o24bEOXefHvc_H-cP-2epLrl8dp3FombXGU0RPWWIFu2DNx5TwZrUPVQEs-YmwNhoCNJ2cD-7qJoXakSCnLsbUIZi6Wp97EzNvvIe3CcNyeLptfktdJVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wavelet-based deconvolution for ill-conditioned systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neelamani, R. ; Choi, H. ; Baraniuk, R.</creator><creatorcontrib>Neelamani, R. ; Choi, H. ; Baraniuk, R.</creatorcontrib><description>In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-based approaches, however, we employ a regularized inverse filter, which allows the algorithm to operate even when the inverse system is ill-conditioned or non-invertible. Using a mean-square-error metric, we strike an optimal balance between Fourier-domain and wavelet-domain regularization. The result is a fast deconvolution algorithm ideally suited to signals and images with edges and other singularities. In simulations with real data, the algorithm outperforms the LTI Wiener filter and other wavelet-based deconvolution algorithms in terms of both visual quality and MSE performance.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780350413</identifier><identifier>ISBN: 9780780350410</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1999.757532</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Deconvolution ; Distortion measurement ; Frequency estimation ; Image processing ; Image restoration ; Noise reduction ; Signal processing ; Wavelet domain ; Wiener filter</subject><ispartof>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.6, p.3241-3244 vol.6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/757532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/757532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neelamani, R.</creatorcontrib><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Baraniuk, R.</creatorcontrib><title>Wavelet-based deconvolution for ill-conditioned systems</title><title>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</title><addtitle>ICASSP</addtitle><description>In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-based approaches, however, we employ a regularized inverse filter, which allows the algorithm to operate even when the inverse system is ill-conditioned or non-invertible. Using a mean-square-error metric, we strike an optimal balance between Fourier-domain and wavelet-domain regularization. The result is a fast deconvolution algorithm ideally suited to signals and images with edges and other singularities. In simulations with real data, the algorithm outperforms the LTI Wiener filter and other wavelet-based deconvolution algorithms in terms of both visual quality and MSE performance.</description><subject>Convolution</subject><subject>Deconvolution</subject><subject>Distortion measurement</subject><subject>Frequency estimation</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Noise reduction</subject><subject>Signal processing</subject><subject>Wavelet domain</subject><subject>Wiener filter</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780350413</isbn><isbn>9780780350410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1tLw0AUhBcvYK39A33KH9h49paz51GKNygoVNG3ssmewEraSDYW-u-N1HkZ-BiGGSGWCkqlgG6fV3ebzWupiKhEh87oMzHTBkkqgs9zcQ3owTiwylyImXIaZKUsXYlFzl8wyToHaGYCP8KBOx5lHTLHInLT7w999zOmfl-0_VCkrpMTi-mPTIl8zCPv8o24bEOXefHvc_H-cP-2epLrl8dp3FombXGU0RPWWIFu2DNx5TwZrUPVQEs-YmwNhoCNJ2cD-7qJoXakSCnLsbUIZi6Wp97EzNvvIe3CcNyeLptfktdJVw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Neelamani, R.</creator><creator>Choi, H.</creator><creator>Baraniuk, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Wavelet-based deconvolution for ill-conditioned systems</title><author>Neelamani, R. ; Choi, H. ; Baraniuk, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i247t-d897b7602ce8e9e6589322a6c0f98d7df37aa7c8954ae8bcdab5919114edf4703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Convolution</topic><topic>Deconvolution</topic><topic>Distortion measurement</topic><topic>Frequency estimation</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Noise reduction</topic><topic>Signal processing</topic><topic>Wavelet domain</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Neelamani, R.</creatorcontrib><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Baraniuk, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neelamani, R.</au><au>Choi, H.</au><au>Baraniuk, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wavelet-based deconvolution for ill-conditioned systems</atitle><btitle>1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258)</btitle><stitle>ICASSP</stitle><date>1999</date><risdate>1999</risdate><volume>6</volume><spage>3241</spage><epage>3244 vol.6</epage><pages>3241-3244 vol.6</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780350413</isbn><isbn>9780780350410</isbn><abstract>In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-based approaches, however, we employ a regularized inverse filter, which allows the algorithm to operate even when the inverse system is ill-conditioned or non-invertible. Using a mean-square-error metric, we strike an optimal balance between Fourier-domain and wavelet-domain regularization. The result is a fast deconvolution algorithm ideally suited to signals and images with edges and other singularities. In simulations with real data, the algorithm outperforms the LTI Wiener filter and other wavelet-based deconvolution algorithms in terms of both visual quality and MSE performance.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1999.757532</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, Vol.6, p.3241-3244 vol.6 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_757532 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Convolution Deconvolution Distortion measurement Frequency estimation Image processing Image restoration Noise reduction Signal processing Wavelet domain Wiener filter |
title | Wavelet-based deconvolution for ill-conditioned systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wavelet-based%20deconvolution%20for%20ill-conditioned%20systems&rft.btitle=1999%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings.%20ICASSP99%20(Cat.%20No.99CH36258)&rft.au=Neelamani,%20R.&rft.date=1999&rft.volume=6&rft.spage=3241&rft.epage=3244%20vol.6&rft.pages=3241-3244%20vol.6&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780350413&rft.isbn_list=9780780350410&rft_id=info:doi/10.1109/ICASSP.1999.757532&rft_dat=%3Cieee_6IE%3E757532%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=757532&rfr_iscdi=true |