Wavelet-based deconvolution for ill-conditioned systems

In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neelamani, R., Choi, H., Baraniuk, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new approach to wavelet-based deconvolution. Roughly speaking, the algorithm comprises Fourier-domain system inversion followed by wavelet-domain noise suppression. Our approach subsumes a number of other wavelet-based deconvolution methods. In contrast to other wavelet-based approaches, however, we employ a regularized inverse filter, which allows the algorithm to operate even when the inverse system is ill-conditioned or non-invertible. Using a mean-square-error metric, we strike an optimal balance between Fourier-domain and wavelet-domain regularization. The result is a fast deconvolution algorithm ideally suited to signals and images with edges and other singularities. In simulations with real data, the algorithm outperforms the LTI Wiener filter and other wavelet-based deconvolution algorithms in terms of both visual quality and MSE performance.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.1999.757532