Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems

A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-11, Vol.47 (11), p.3747-3757
Hauptverfasser: Yan-Jun Liu, Shaocheng Tong, Chen, C. L. Philip, Dong-Juan Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3757
container_issue 11
container_start_page 3747
container_title IEEE transactions on cybernetics
container_volume 47
creator Yan-Jun Liu
Shaocheng Tong
Chen, C. L. Philip
Dong-Juan Li
description A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.
doi_str_mv 10.1109/TCYB.2016.2581173
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7571100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7571100</ieee_id><sourcerecordid>2174460904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-cc0dcc88d731572ede7cae3ff69fbdacffc8c274b239cf273c4efc2407f33d393</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVoSUKaHxAKRdBLL-vqY3elPcYmaQLGPdQ-5CRk7cgoXUuupA2Y_vnK2PGhuoyYeeaF4UHojpIJpaT7vpy9TCeM0HbCGkmp4BfomtFWVoyJ5sP534ordJvSKylPllYnL9EVE23L2o5eo7_3vd5l9wZ4scCz4HMMA14l5zf42WfYRD3gqY7RQcTzvd6NPrzhx9Gb7ILXQ8I2RLzyBmLWzuNF8IPzoCOeDsH8rpbRab8Zh9Io4SnHAmX8a58ybNMn9NGWCLg91Ru0enxYzp6q-c8fz7P7eWVq2uXKGNIbI2UvOG0Egx6E0cCtbTu77rWx1kjDRL1mvDOWCW5qsIbVRFjOe97xG_TtmLuL4c8IKautSwaGQXsIY1JUNp1gdSObgn79D30NYzwcqhgVdd2SjtSFokfKxJBSBKt20W113CtK1EGOOshRBznqJKfsfDklj-st9OeNdxUF-HwEHACcx6IRJZDwf0trlVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174460904</pqid></control><display><type>article</type><title>Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Yan-Jun Liu ; Shaocheng Tong ; Chen, C. L. Philip ; Dong-Juan Li</creator><creatorcontrib>Yan-Jun Liu ; Shaocheng Tong ; Chen, C. L. Philip ; Dong-Juan Li</creatorcontrib><description>A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2016.2581173</identifier><identifier>PMID: 27662691</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Artificial neural networks ; Backstepping ; barrier Lyapunov functionals (BLFs) ; Computer simulation ; Couplings ; Feedback control ; Integrals ; MIMO ; MIMO (control systems) ; neural network (NN) control ; Neural networks ; Nonlinear systems ; Reference signals ; Strategy ; Subsystems ; uncertain nonlinear systems ; Uncertainty</subject><ispartof>IEEE transactions on cybernetics, 2017-11, Vol.47 (11), p.3747-3757</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-cc0dcc88d731572ede7cae3ff69fbdacffc8c274b239cf273c4efc2407f33d393</citedby><cites>FETCH-LOGICAL-c419t-cc0dcc88d731572ede7cae3ff69fbdacffc8c274b239cf273c4efc2407f33d393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7571100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7571100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27662691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan-Jun Liu</creatorcontrib><creatorcontrib>Shaocheng Tong</creatorcontrib><creatorcontrib>Chen, C. L. Philip</creatorcontrib><creatorcontrib>Dong-Juan Li</creatorcontrib><title>Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Backstepping</subject><subject>barrier Lyapunov functionals (BLFs)</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Feedback control</subject><subject>Integrals</subject><subject>MIMO</subject><subject>MIMO (control systems)</subject><subject>neural network (NN) control</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Reference signals</subject><subject>Strategy</subject><subject>Subsystems</subject><subject>uncertain nonlinear systems</subject><subject>Uncertainty</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhkVoSUKaHxAKRdBLL-vqY3elPcYmaQLGPdQ-5CRk7cgoXUuupA2Y_vnK2PGhuoyYeeaF4UHojpIJpaT7vpy9TCeM0HbCGkmp4BfomtFWVoyJ5sP534ordJvSKylPllYnL9EVE23L2o5eo7_3vd5l9wZ4scCz4HMMA14l5zf42WfYRD3gqY7RQcTzvd6NPrzhx9Gb7ILXQ8I2RLzyBmLWzuNF8IPzoCOeDsH8rpbRab8Zh9Io4SnHAmX8a58ybNMn9NGWCLg91Ru0enxYzp6q-c8fz7P7eWVq2uXKGNIbI2UvOG0Egx6E0cCtbTu77rWx1kjDRL1mvDOWCW5qsIbVRFjOe97xG_TtmLuL4c8IKautSwaGQXsIY1JUNp1gdSObgn79D30NYzwcqhgVdd2SjtSFokfKxJBSBKt20W113CtK1EGOOshRBznqJKfsfDklj-st9OeNdxUF-HwEHACcx6IRJZDwf0trlVA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Yan-Jun Liu</creator><creator>Shaocheng Tong</creator><creator>Chen, C. L. Philip</creator><creator>Dong-Juan Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems</title><author>Yan-Jun Liu ; Shaocheng Tong ; Chen, C. L. Philip ; Dong-Juan Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-cc0dcc88d731572ede7cae3ff69fbdacffc8c274b239cf273c4efc2407f33d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Backstepping</topic><topic>barrier Lyapunov functionals (BLFs)</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Feedback control</topic><topic>Integrals</topic><topic>MIMO</topic><topic>MIMO (control systems)</topic><topic>neural network (NN) control</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Reference signals</topic><topic>Strategy</topic><topic>Subsystems</topic><topic>uncertain nonlinear systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan-Jun Liu</creatorcontrib><creatorcontrib>Shaocheng Tong</creatorcontrib><creatorcontrib>Chen, C. L. Philip</creatorcontrib><creatorcontrib>Dong-Juan Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan-Jun Liu</au><au>Shaocheng Tong</au><au>Chen, C. L. Philip</au><au>Dong-Juan Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>47</volume><issue>11</issue><spage>3747</spage><epage>3757</epage><pages>3747-3757</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27662691</pmid><doi>10.1109/TCYB.2016.2581173</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2017-11, Vol.47 (11), p.3747-3757
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_7571100
source IEEE Electronic Library (IEL)
subjects Adaptive control
Artificial neural networks
Backstepping
barrier Lyapunov functionals (BLFs)
Computer simulation
Couplings
Feedback control
Integrals
MIMO
MIMO (control systems)
neural network (NN) control
Neural networks
Nonlinear systems
Reference signals
Strategy
Subsystems
uncertain nonlinear systems
Uncertainty
title Adaptive NN Control Using Integral Barrier Lyapunov Functionals for Uncertain Nonlinear Block-Triangular Constraint Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20NN%20Control%20Using%20Integral%20Barrier%20Lyapunov%20Functionals%20for%20Uncertain%20Nonlinear%20Block-Triangular%20Constraint%20Systems&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yan-Jun%20Liu&rft.date=2017-11-01&rft.volume=47&rft.issue=11&rft.spage=3747&rft.epage=3757&rft.pages=3747-3757&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2016.2581173&rft_dat=%3Cproquest_RIE%3E2174460904%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174460904&rft_id=info:pmid/27662691&rft_ieee_id=7571100&rfr_iscdi=true