A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control
A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2016-10, Vol.10 (5), p.979-989 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 5 |
container_start_page | 979 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 10 |
creator | Mirbozorgi, S. Abdollah Jia, Yaoyao Canales, Daniel Ghovanloo, Maysam |
description | A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF > 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°. |
doi_str_mv | 10.1109/TBCAS.2016.2577705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7570205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7570205</ieee_id><sourcerecordid>1847634289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxZfS0qRpv0ALZaGXXNYdaXf051JwTNIUDCkkJUchy2Nng3a1ldYN-faRY9e0OUnM-73hDa8oPjKYMAb6683ZbHo94cDEhKOUEvBVccx0A5XWGl5v_zWvGmzwqHiX0j0ACq752-KIS4GNluK4uJ2Wt20kTyn5x-pneKBIy_IydOTsmrI23pXXtO6oH_N8FoaBYnkRWp9K2-eBD4mW1TyEoXw2Z6QfY_Dvizcr6xN92L8nxa-L85vZZTW_-v5jNp1XDjWMFccaEKWukTElnONS1aKWS-kWgNZSYxXUVjEhcKEAtXVoV2LBQYIGRao-Kb7t9g6bRUdLl3NG680Q287GRxNsa_5X-vbOrMMfgxyVQswLTvcLYvi9oTSark2OvLc9hU0yTCEXKEGwjH55gd6HTezzeZlqpKgbrnSm-I5yMaQUaXUIw8BsezPPvZltb2bfWzZ9_veMg-VvURn4tANaIjrIMgfj2f4EIA6bOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847634289</pqid></control><display><type>article</type><title>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</title><source>IEEE Electronic Library (IEL)</source><creator>Mirbozorgi, S. Abdollah ; Jia, Yaoyao ; Canales, Daniel ; Ghovanloo, Maysam</creator><creatorcontrib>Mirbozorgi, S. Abdollah ; Jia, Yaoyao ; Canales, Daniel ; Ghovanloo, Maysam</creatorcontrib><description>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF > 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2577705</identifier><identifier>PMID: 27654976</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Animals ; Awake freely behaving animals ; Batteries ; Biosensing Techniques - instrumentation ; Biosensing Techniques - veterinary ; close loop power control ; Coils ; Copper ; Data acquisition ; Electric Power Supplies - veterinary ; Electrophysiology ; enriched environments ; Enrichment ; Equipment Design ; Equipment Failure Analysis ; Feedback ; homecage ; Housing, Animal ; inductive wireless power transmission (WPT) ; Metal foils ; Miniaturization ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - veterinary ; Power control ; Power transfer ; Q factors ; Resonant frequency ; Rodents ; Sensors ; Stimulators ; Wireless communication ; Wireless Technology - instrumentation</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.979-989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</citedby><cites>FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7570205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7570205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27654976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Canales, Daniel</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF > 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.</description><subject>Actuators</subject><subject>Animals</subject><subject>Awake freely behaving animals</subject><subject>Batteries</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - veterinary</subject><subject>close loop power control</subject><subject>Coils</subject><subject>Copper</subject><subject>Data acquisition</subject><subject>Electric Power Supplies - veterinary</subject><subject>Electrophysiology</subject><subject>enriched environments</subject><subject>Enrichment</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>homecage</subject><subject>Housing, Animal</subject><subject>inductive wireless power transmission (WPT)</subject><subject>Metal foils</subject><subject>Miniaturization</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - veterinary</subject><subject>Power control</subject><subject>Power transfer</subject><subject>Q factors</subject><subject>Resonant frequency</subject><subject>Rodents</subject><subject>Sensors</subject><subject>Stimulators</subject><subject>Wireless communication</subject><subject>Wireless Technology - instrumentation</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9rGzEQxZfS0qRpv0ALZaGXXNYdaXf051JwTNIUDCkkJUchy2Nng3a1ldYN-faRY9e0OUnM-73hDa8oPjKYMAb6683ZbHo94cDEhKOUEvBVccx0A5XWGl5v_zWvGmzwqHiX0j0ACq752-KIS4GNluK4uJ2Wt20kTyn5x-pneKBIy_IydOTsmrI23pXXtO6oH_N8FoaBYnkRWp9K2-eBD4mW1TyEoXw2Z6QfY_Dvizcr6xN92L8nxa-L85vZZTW_-v5jNp1XDjWMFccaEKWukTElnONS1aKWS-kWgNZSYxXUVjEhcKEAtXVoV2LBQYIGRao-Kb7t9g6bRUdLl3NG680Q287GRxNsa_5X-vbOrMMfgxyVQswLTvcLYvi9oTSark2OvLc9hU0yTCEXKEGwjH55gd6HTezzeZlqpKgbrnSm-I5yMaQUaXUIw8BsezPPvZltb2bfWzZ9_veMg-VvURn4tANaIjrIMgfj2f4EIA6bOw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Mirbozorgi, S. Abdollah</creator><creator>Jia, Yaoyao</creator><creator>Canales, Daniel</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161001</creationdate><title>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</title><author>Mirbozorgi, S. Abdollah ; Jia, Yaoyao ; Canales, Daniel ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actuators</topic><topic>Animals</topic><topic>Awake freely behaving animals</topic><topic>Batteries</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - veterinary</topic><topic>close loop power control</topic><topic>Coils</topic><topic>Copper</topic><topic>Data acquisition</topic><topic>Electric Power Supplies - veterinary</topic><topic>Electrophysiology</topic><topic>enriched environments</topic><topic>Enrichment</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>homecage</topic><topic>Housing, Animal</topic><topic>inductive wireless power transmission (WPT)</topic><topic>Metal foils</topic><topic>Miniaturization</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - veterinary</topic><topic>Power control</topic><topic>Power transfer</topic><topic>Q factors</topic><topic>Resonant frequency</topic><topic>Rodents</topic><topic>Sensors</topic><topic>Stimulators</topic><topic>Wireless communication</topic><topic>Wireless Technology - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Canales, Daniel</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirbozorgi, S. Abdollah</au><au>Jia, Yaoyao</au><au>Canales, Daniel</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>10</volume><issue>5</issue><spage>979</spage><epage>989</epage><pages>979-989</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF > 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27654976</pmid><doi>10.1109/TBCAS.2016.2577705</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.979-989 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_ieee_primary_7570205 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Animals Awake freely behaving animals Batteries Biosensing Techniques - instrumentation Biosensing Techniques - veterinary close loop power control Coils Copper Data acquisition Electric Power Supplies - veterinary Electrophysiology enriched environments Enrichment Equipment Design Equipment Failure Analysis Feedback homecage Housing, Animal inductive wireless power transmission (WPT) Metal foils Miniaturization Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - veterinary Power control Power transfer Q factors Resonant frequency Rodents Sensors Stimulators Wireless communication Wireless Technology - instrumentation |
title | A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wirelessly-Powered%20Homecage%20With%20Segmented%20Copper%20Foils%20and%20Closed-Loop%20Power%20Control&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mirbozorgi,%20S.%20Abdollah&rft.date=2016-10-01&rft.volume=10&rft.issue=5&rft.spage=979&rft.epage=989&rft.pages=979-989&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2577705&rft_dat=%3Cproquest_RIE%3E1847634289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847634289&rft_id=info:pmid/27654976&rft_ieee_id=7570205&rfr_iscdi=true |