A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control

A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2016-10, Vol.10 (5), p.979-989
Hauptverfasser: Mirbozorgi, S. Abdollah, Jia, Yaoyao, Canales, Daniel, Ghovanloo, Maysam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 5
container_start_page 979
container_title IEEE transactions on biomedical circuits and systems
container_volume 10
creator Mirbozorgi, S. Abdollah
Jia, Yaoyao
Canales, Daniel
Ghovanloo, Maysam
description A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF > 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.
doi_str_mv 10.1109/TBCAS.2016.2577705
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7570205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7570205</ieee_id><sourcerecordid>1847634289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxZfS0qRpv0ALZaGXXNYdaXf051JwTNIUDCkkJUchy2Nng3a1ldYN-faRY9e0OUnM-73hDa8oPjKYMAb6683ZbHo94cDEhKOUEvBVccx0A5XWGl5v_zWvGmzwqHiX0j0ACq752-KIS4GNluK4uJ2Wt20kTyn5x-pneKBIy_IydOTsmrI23pXXtO6oH_N8FoaBYnkRWp9K2-eBD4mW1TyEoXw2Z6QfY_Dvizcr6xN92L8nxa-L85vZZTW_-v5jNp1XDjWMFccaEKWukTElnONS1aKWS-kWgNZSYxXUVjEhcKEAtXVoV2LBQYIGRao-Kb7t9g6bRUdLl3NG680Q287GRxNsa_5X-vbOrMMfgxyVQswLTvcLYvi9oTSark2OvLc9hU0yTCEXKEGwjH55gd6HTezzeZlqpKgbrnSm-I5yMaQUaXUIw8BsezPPvZltb2bfWzZ9_veMg-VvURn4tANaIjrIMgfj2f4EIA6bOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847634289</pqid></control><display><type>article</type><title>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</title><source>IEEE Electronic Library (IEL)</source><creator>Mirbozorgi, S. Abdollah ; Jia, Yaoyao ; Canales, Daniel ; Ghovanloo, Maysam</creator><creatorcontrib>Mirbozorgi, S. Abdollah ; Jia, Yaoyao ; Canales, Daniel ; Ghovanloo, Maysam</creatorcontrib><description>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q &gt; 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF &gt; 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2016.2577705</identifier><identifier>PMID: 27654976</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Animals ; Awake freely behaving animals ; Batteries ; Biosensing Techniques - instrumentation ; Biosensing Techniques - veterinary ; close loop power control ; Coils ; Copper ; Data acquisition ; Electric Power Supplies - veterinary ; Electrophysiology ; enriched environments ; Enrichment ; Equipment Design ; Equipment Failure Analysis ; Feedback ; homecage ; Housing, Animal ; inductive wireless power transmission (WPT) ; Metal foils ; Miniaturization ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - veterinary ; Power control ; Power transfer ; Q factors ; Resonant frequency ; Rodents ; Sensors ; Stimulators ; Wireless communication ; Wireless Technology - instrumentation</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.979-989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</citedby><cites>FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7570205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7570205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27654976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Canales, Daniel</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q &gt; 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF &gt; 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.</description><subject>Actuators</subject><subject>Animals</subject><subject>Awake freely behaving animals</subject><subject>Batteries</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - veterinary</subject><subject>close loop power control</subject><subject>Coils</subject><subject>Copper</subject><subject>Data acquisition</subject><subject>Electric Power Supplies - veterinary</subject><subject>Electrophysiology</subject><subject>enriched environments</subject><subject>Enrichment</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>homecage</subject><subject>Housing, Animal</subject><subject>inductive wireless power transmission (WPT)</subject><subject>Metal foils</subject><subject>Miniaturization</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - veterinary</subject><subject>Power control</subject><subject>Power transfer</subject><subject>Q factors</subject><subject>Resonant frequency</subject><subject>Rodents</subject><subject>Sensors</subject><subject>Stimulators</subject><subject>Wireless communication</subject><subject>Wireless Technology - instrumentation</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9rGzEQxZfS0qRpv0ALZaGXXNYdaXf051JwTNIUDCkkJUchy2Nng3a1ldYN-faRY9e0OUnM-73hDa8oPjKYMAb6683ZbHo94cDEhKOUEvBVccx0A5XWGl5v_zWvGmzwqHiX0j0ACq752-KIS4GNluK4uJ2Wt20kTyn5x-pneKBIy_IydOTsmrI23pXXtO6oH_N8FoaBYnkRWp9K2-eBD4mW1TyEoXw2Z6QfY_Dvizcr6xN92L8nxa-L85vZZTW_-v5jNp1XDjWMFccaEKWukTElnONS1aKWS-kWgNZSYxXUVjEhcKEAtXVoV2LBQYIGRao-Kb7t9g6bRUdLl3NG680Q287GRxNsa_5X-vbOrMMfgxyVQswLTvcLYvi9oTSark2OvLc9hU0yTCEXKEGwjH55gd6HTezzeZlqpKgbrnSm-I5yMaQUaXUIw8BsezPPvZltb2bfWzZ9_veMg-VvURn4tANaIjrIMgfj2f4EIA6bOw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Mirbozorgi, S. Abdollah</creator><creator>Jia, Yaoyao</creator><creator>Canales, Daniel</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161001</creationdate><title>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</title><author>Mirbozorgi, S. Abdollah ; Jia, Yaoyao ; Canales, Daniel ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-25305579351186cc2783637d7cb05aae4a803a81665b8059ac5af6b2070908e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actuators</topic><topic>Animals</topic><topic>Awake freely behaving animals</topic><topic>Batteries</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - veterinary</topic><topic>close loop power control</topic><topic>Coils</topic><topic>Copper</topic><topic>Data acquisition</topic><topic>Electric Power Supplies - veterinary</topic><topic>Electrophysiology</topic><topic>enriched environments</topic><topic>Enrichment</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>homecage</topic><topic>Housing, Animal</topic><topic>inductive wireless power transmission (WPT)</topic><topic>Metal foils</topic><topic>Miniaturization</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - veterinary</topic><topic>Power control</topic><topic>Power transfer</topic><topic>Q factors</topic><topic>Resonant frequency</topic><topic>Rodents</topic><topic>Sensors</topic><topic>Stimulators</topic><topic>Wireless communication</topic><topic>Wireless Technology - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Canales, Daniel</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirbozorgi, S. Abdollah</au><au>Jia, Yaoyao</au><au>Canales, Daniel</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>10</volume><issue>5</issue><spage>979</spage><epage>989</epage><pages>979-989</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q &gt; 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency (SRF &gt; 42 MHz), they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window (4.1 ± 0.3 V) by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ~7 cm height, plus stability against angular mis-alignments of up to 80°.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27654976</pmid><doi>10.1109/TBCAS.2016.2577705</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2016-10, Vol.10 (5), p.979-989
issn 1932-4545
1940-9990
language eng
recordid cdi_ieee_primary_7570205
source IEEE Electronic Library (IEL)
subjects Actuators
Animals
Awake freely behaving animals
Batteries
Biosensing Techniques - instrumentation
Biosensing Techniques - veterinary
close loop power control
Coils
Copper
Data acquisition
Electric Power Supplies - veterinary
Electrophysiology
enriched environments
Enrichment
Equipment Design
Equipment Failure Analysis
Feedback
homecage
Housing, Animal
inductive wireless power transmission (WPT)
Metal foils
Miniaturization
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - veterinary
Power control
Power transfer
Q factors
Resonant frequency
Rodents
Sensors
Stimulators
Wireless communication
Wireless Technology - instrumentation
title A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wirelessly-Powered%20Homecage%20With%20Segmented%20Copper%20Foils%20and%20Closed-Loop%20Power%20Control&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mirbozorgi,%20S.%20Abdollah&rft.date=2016-10-01&rft.volume=10&rft.issue=5&rft.spage=979&rft.epage=989&rft.pages=979-989&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2016.2577705&rft_dat=%3Cproquest_RIE%3E1847634289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847634289&rft_id=info:pmid/27654976&rft_ieee_id=7570205&rfr_iscdi=true