Learning to Be Energy-Efficient in Cooperative Networks

Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2016-12, Vol.20 (12), p.2518-2521
Hauptverfasser: Tian, Daxin, Zhou, Jianshan, Sheng, Zhengguo, Ni, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2521
container_issue 12
container_start_page 2518
container_title IEEE communications letters
container_volume 20
creator Tian, Daxin
Zhou, Jianshan
Sheng, Zhengguo
Ni, Qiang
description Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes' selfishness, proving that it is an ordinal game (OPG), and presents a game-theoretic analysis to address the benefit-equilibrium decision-making issue in relay selection. A stochastic learning-based relay selection algorithm is proposed for transmitters to learn a Nash-equilibrium strategy in a distributed manner. We prove through the theoretical and numerical analysis that the proposed algorithm is guaranteed to converge to a Nash equilibrium state, where the resulting cooperative network is energy efficient and reliable. The strength of the proposed algorithm is also confirmed through comparative simulations in terms of energy benefit and fairness performances.
doi_str_mv 10.1109/LCOMM.2016.2608820
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7565480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7565480</ieee_id><sourcerecordid>1848276556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7ad8ef202f3c7732a05eec9026090ba23d6f91e7c91d88976088351a285e64523</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-ASiXPK2olfR4jKQ0rpBc6WSdeVC8TBTkH99yS04rKzh5nd0UfIJYUZpaBv6mq5WMwYUDFjApRicEQmlHOVs2EcDzsonUup1Sk5S2kDAIpxOiGyRhtb366zPmR3mM1bjOtdPnfONx7bPvNtVoXQYbS9_8bsGfufEN_TOTlx9iPhxUGn5PV-_lI95vXy4am6rfOmBN3n0q4UOgbMFY2UBbPAERsNQ0kNb5YVK-E0RdloulJKy7F7walliqMoOSum5Hp_t4vha4upN5uwje3w0lBVKiYF52Jwsb2riSGliM500X_auDMUzAjI_AEyIyBzADSErvYhj4j_AckFLxUUv1dBX5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848276556</pqid></control><display><type>article</type><title>Learning to Be Energy-Efficient in Cooperative Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Daxin ; Zhou, Jianshan ; Sheng, Zhengguo ; Ni, Qiang</creator><creatorcontrib>Tian, Daxin ; Zhou, Jianshan ; Sheng, Zhengguo ; Ni, Qiang</creatorcontrib><description>Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes' selfishness, proving that it is an ordinal game (OPG), and presents a game-theoretic analysis to address the benefit-equilibrium decision-making issue in relay selection. A stochastic learning-based relay selection algorithm is proposed for transmitters to learn a Nash-equilibrium strategy in a distributed manner. We prove through the theoretical and numerical analysis that the proposed algorithm is guaranteed to converge to a Nash equilibrium state, where the resulting cooperative network is energy efficient and reliable. The strength of the proposed algorithm is also confirmed through comparative simulations in terms of energy benefit and fairness performances.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2608820</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computer simulation ; Cooperative communication ; Cooperative networks ; Cooperative systems ; decentralized learning ; Decision analysis ; Decision making ; Decision theory ; Energy transmission ; energy-efficiency ; Equilibrium ; Game theory ; Machine learning ; Numerical analysis ; Relay ; Relays ; self-organized relay selection ; Transmitters</subject><ispartof>IEEE communications letters, 2016-12, Vol.20 (12), p.2518-2521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7ad8ef202f3c7732a05eec9026090ba23d6f91e7c91d88976088351a285e64523</citedby><cites>FETCH-LOGICAL-c409t-7ad8ef202f3c7732a05eec9026090ba23d6f91e7c91d88976088351a285e64523</cites><orcidid>0000-0002-4593-1656 ; 0000-0001-7796-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7565480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7565480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Sheng, Zhengguo</creatorcontrib><creatorcontrib>Ni, Qiang</creatorcontrib><title>Learning to Be Energy-Efficient in Cooperative Networks</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes' selfishness, proving that it is an ordinal game (OPG), and presents a game-theoretic analysis to address the benefit-equilibrium decision-making issue in relay selection. A stochastic learning-based relay selection algorithm is proposed for transmitters to learn a Nash-equilibrium strategy in a distributed manner. We prove through the theoretical and numerical analysis that the proposed algorithm is guaranteed to converge to a Nash equilibrium state, where the resulting cooperative network is energy efficient and reliable. The strength of the proposed algorithm is also confirmed through comparative simulations in terms of energy benefit and fairness performances.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Cooperative communication</subject><subject>Cooperative networks</subject><subject>Cooperative systems</subject><subject>decentralized learning</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Energy transmission</subject><subject>energy-efficiency</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Machine learning</subject><subject>Numerical analysis</subject><subject>Relay</subject><subject>Relays</subject><subject>self-organized relay selection</subject><subject>Transmitters</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-ASiXPK2olfR4jKQ0rpBc6WSdeVC8TBTkH99yS04rKzh5nd0UfIJYUZpaBv6mq5WMwYUDFjApRicEQmlHOVs2EcDzsonUup1Sk5S2kDAIpxOiGyRhtb366zPmR3mM1bjOtdPnfONx7bPvNtVoXQYbS9_8bsGfufEN_TOTlx9iPhxUGn5PV-_lI95vXy4am6rfOmBN3n0q4UOgbMFY2UBbPAERsNQ0kNb5YVK-E0RdloulJKy7F7walliqMoOSum5Hp_t4vha4upN5uwje3w0lBVKiYF52Jwsb2riSGliM500X_auDMUzAjI_AEyIyBzADSErvYhj4j_AckFLxUUv1dBX5Q</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Tian, Daxin</creator><creator>Zhou, Jianshan</creator><creator>Sheng, Zhengguo</creator><creator>Ni, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4593-1656</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid></search><sort><creationdate>20161201</creationdate><title>Learning to Be Energy-Efficient in Cooperative Networks</title><author>Tian, Daxin ; Zhou, Jianshan ; Sheng, Zhengguo ; Ni, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7ad8ef202f3c7732a05eec9026090ba23d6f91e7c91d88976088351a285e64523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Cooperative communication</topic><topic>Cooperative networks</topic><topic>Cooperative systems</topic><topic>decentralized learning</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Energy transmission</topic><topic>energy-efficiency</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Machine learning</topic><topic>Numerical analysis</topic><topic>Relay</topic><topic>Relays</topic><topic>self-organized relay selection</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Daxin</creatorcontrib><creatorcontrib>Zhou, Jianshan</creatorcontrib><creatorcontrib>Sheng, Zhengguo</creatorcontrib><creatorcontrib>Ni, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Daxin</au><au>Zhou, Jianshan</au><au>Sheng, Zhengguo</au><au>Ni, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Be Energy-Efficient in Cooperative Networks</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>20</volume><issue>12</issue><spage>2518</spage><epage>2521</epage><pages>2518-2521</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes' selfishness, proving that it is an ordinal game (OPG), and presents a game-theoretic analysis to address the benefit-equilibrium decision-making issue in relay selection. A stochastic learning-based relay selection algorithm is proposed for transmitters to learn a Nash-equilibrium strategy in a distributed manner. We prove through the theoretical and numerical analysis that the proposed algorithm is guaranteed to converge to a Nash equilibrium state, where the resulting cooperative network is energy efficient and reliable. The strength of the proposed algorithm is also confirmed through comparative simulations in terms of energy benefit and fairness performances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2608820</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4593-1656</orcidid><orcidid>https://orcid.org/0000-0001-7796-5650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2016-12, Vol.20 (12), p.2518-2521
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_7565480
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Computer simulation
Cooperative communication
Cooperative networks
Cooperative systems
decentralized learning
Decision analysis
Decision making
Decision theory
Energy transmission
energy-efficiency
Equilibrium
Game theory
Machine learning
Numerical analysis
Relay
Relays
self-organized relay selection
Transmitters
title Learning to Be Energy-Efficient in Cooperative Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Be%20Energy-Efficient%20in%20Cooperative%20Networks&rft.jtitle=IEEE%20communications%20letters&rft.au=Tian,%20Daxin&rft.date=2016-12-01&rft.volume=20&rft.issue=12&rft.spage=2518&rft.epage=2521&rft.pages=2518-2521&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2608820&rft_dat=%3Cproquest_RIE%3E1848276556%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848276556&rft_id=info:pmid/&rft_ieee_id=7565480&rfr_iscdi=true