A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain

In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2016-12, Vol.16 (24), p.8953-8962
Hauptverfasser: Kang, Chul Woo, Kim, Hyun Jin, Park, Chan Gook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8962
container_issue 24
container_start_page 8953
container_title IEEE sensors journal
container_volume 16
creator Kang, Chul Woo
Kim, Hyun Jin
Park, Chan Gook
description In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.
doi_str_mv 10.1109/JSEN.2016.2607223
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7563298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7563298</ieee_id><sourcerecordid>10_1109_JSEN_2016_2607223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGExF9AONmXqA409vOz7ISEBF0ISTumktnCiO0JTOVxLeXCnF1z02-cxYfIfecDThn-nH6MXobxIyLQSyYjGO4ID2epiriMlGXXQYWJSA_r8lNCF-McS1T2SPTjE6-K6zpvGldU9OFx2Lr6jXNduvGu3ZT0WX4-w3uW3ewdPQ6pk8YrKFHfI5-2xzocIOuviVXJe6CvTvfPlmOR4vhJJq9P78Ms1lUAKRttJKgFPAisbw0RpQMtQWzQtSFAskES1BDKY6QVok1pQahdGI05ynDlUboE37aLXwTgrdlvveuQv-Tc5Z3MvJORt7JyM8yjp2HU8dZa_95mQqItYJfSYlZ7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Chul Woo ; Kim, Hyun Jin ; Park, Chan Gook</creator><creatorcontrib>Kang, Chul Woo ; Kim, Hyun Jin ; Park, Chan Gook</creatorcontrib><description>In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2607223</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive estimation ; inertial navigation ; Kalman filtering ; Motion estimation ; sensor fusion</subject><ispartof>IEEE sensors journal, 2016-12, Vol.16 (24), p.8953-8962</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</citedby><cites>FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7563298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7563298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Chul Woo</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><title>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.</description><subject>adaptive estimation</subject><subject>inertial navigation</subject><subject>Kalman filtering</subject><subject>Motion estimation</subject><subject>sensor fusion</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwkAUhSdGExF9AONmXqA409vOz7ISEBF0ISTumktnCiO0JTOVxLeXCnF1z02-cxYfIfecDThn-nH6MXobxIyLQSyYjGO4ID2epiriMlGXXQYWJSA_r8lNCF-McS1T2SPTjE6-K6zpvGldU9OFx2Lr6jXNduvGu3ZT0WX4-w3uW3ewdPQ6pk8YrKFHfI5-2xzocIOuviVXJe6CvTvfPlmOR4vhJJq9P78Ms1lUAKRttJKgFPAisbw0RpQMtQWzQtSFAskES1BDKY6QVok1pQahdGI05ynDlUboE37aLXwTgrdlvveuQv-Tc5Z3MvJORt7JyM8yjp2HU8dZa_95mQqItYJfSYlZ7g</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Kang, Chul Woo</creator><creator>Kim, Hyun Jin</creator><creator>Park, Chan Gook</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161215</creationdate><title>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</title><author>Kang, Chul Woo ; Kim, Hyun Jin ; Park, Chan Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adaptive estimation</topic><topic>inertial navigation</topic><topic>Kalman filtering</topic><topic>Motion estimation</topic><topic>sensor fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chul Woo</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Chul Woo</au><au>Kim, Hyun Jin</au><au>Park, Chan Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-12-15</date><risdate>2016</risdate><volume>16</volume><issue>24</issue><spage>8953</spage><epage>8962</epage><pages>8953-8962</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2016.2607223</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2016-12, Vol.16 (24), p.8953-8962
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_7563298
source IEEE Electronic Library (IEL)
subjects adaptive estimation
inertial navigation
Kalman filtering
Motion estimation
sensor fusion
title A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Human%20Motion%20Tracking%20Algorithm%20Using%20Adaptive%20EKF%20Based%20on%20Markov%20Chain&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kang,%20Chul%20Woo&rft.date=2016-12-15&rft.volume=16&rft.issue=24&rft.spage=8953&rft.epage=8962&rft.pages=8953-8962&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2607223&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2016_2607223%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7563298&rfr_iscdi=true