A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain
In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigatio...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2016-12, Vol.16 (24), p.8953-8962 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8962 |
---|---|
container_issue | 24 |
container_start_page | 8953 |
container_title | IEEE sensors journal |
container_volume | 16 |
creator | Kang, Chul Woo Kim, Hyun Jin Park, Chan Gook |
description | In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms. |
doi_str_mv | 10.1109/JSEN.2016.2607223 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7563298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7563298</ieee_id><sourcerecordid>10_1109_JSEN_2016_2607223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGExF9AONmXqA409vOz7ISEBF0ISTumktnCiO0JTOVxLeXCnF1z02-cxYfIfecDThn-nH6MXobxIyLQSyYjGO4ID2epiriMlGXXQYWJSA_r8lNCF-McS1T2SPTjE6-K6zpvGldU9OFx2Lr6jXNduvGu3ZT0WX4-w3uW3ewdPQ6pk8YrKFHfI5-2xzocIOuviVXJe6CvTvfPlmOR4vhJJq9P78Ms1lUAKRttJKgFPAisbw0RpQMtQWzQtSFAskES1BDKY6QVok1pQahdGI05ynDlUboE37aLXwTgrdlvveuQv-Tc5Z3MvJORt7JyM8yjp2HU8dZa_95mQqItYJfSYlZ7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Chul Woo ; Kim, Hyun Jin ; Park, Chan Gook</creator><creatorcontrib>Kang, Chul Woo ; Kim, Hyun Jin ; Park, Chan Gook</creatorcontrib><description>In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2607223</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive estimation ; inertial navigation ; Kalman filtering ; Motion estimation ; sensor fusion</subject><ispartof>IEEE sensors journal, 2016-12, Vol.16 (24), p.8953-8962</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</citedby><cites>FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7563298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7563298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Chul Woo</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><title>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.</description><subject>adaptive estimation</subject><subject>inertial navigation</subject><subject>Kalman filtering</subject><subject>Motion estimation</subject><subject>sensor fusion</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwkAUhSdGExF9AONmXqA409vOz7ISEBF0ISTumktnCiO0JTOVxLeXCnF1z02-cxYfIfecDThn-nH6MXobxIyLQSyYjGO4ID2epiriMlGXXQYWJSA_r8lNCF-McS1T2SPTjE6-K6zpvGldU9OFx2Lr6jXNduvGu3ZT0WX4-w3uW3ewdPQ6pk8YrKFHfI5-2xzocIOuviVXJe6CvTvfPlmOR4vhJJq9P78Ms1lUAKRttJKgFPAisbw0RpQMtQWzQtSFAskES1BDKY6QVok1pQahdGI05ynDlUboE37aLXwTgrdlvveuQv-Tc5Z3MvJORt7JyM8yjp2HU8dZa_95mQqItYJfSYlZ7g</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Kang, Chul Woo</creator><creator>Kim, Hyun Jin</creator><creator>Park, Chan Gook</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161215</creationdate><title>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</title><author>Kang, Chul Woo ; Kim, Hyun Jin ; Park, Chan Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b738831c4e1fdd6f0a9e3dbaa9c8370604a93f6388984edf936894d91150ab9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adaptive estimation</topic><topic>inertial navigation</topic><topic>Kalman filtering</topic><topic>Motion estimation</topic><topic>sensor fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Chul Woo</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Park, Chan Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Chul Woo</au><au>Kim, Hyun Jin</au><au>Park, Chan Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-12-15</date><risdate>2016</risdate><volume>16</volume><issue>24</issue><spage>8953</spage><epage>8962</epage><pages>8953-8962</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, a precise attitude estimation of human body segments using a Markov chain-based adaptive Kalman filter is proposed. For the attitude estimation with inertial sensors and magnetometers, which is called to attitude and heading reference system (AHRS), a measurement disturbance mitigation algorithm is the most important part. In this paper, new parameters for detecting disturbances on accelerometers and magnetometers are applied to prevent divergence. In addition, for the rapid detection of disturbances, a hidden Markov-based adaptation rule is developed. By the proposed adaptive filter with these two major improvements, the disturbed measurement is effectively detected and mitigated, and experimental results show the improved attitude estimation performances over other AHRS algorithms.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2016.2607223</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2016-12, Vol.16 (24), p.8953-8962 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_7563298 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive estimation inertial navigation Kalman filtering Motion estimation sensor fusion |
title | A Human Motion Tracking Algorithm Using Adaptive EKF Based on Markov Chain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Human%20Motion%20Tracking%20Algorithm%20Using%20Adaptive%20EKF%20Based%20on%20Markov%20Chain&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kang,%20Chul%20Woo&rft.date=2016-12-15&rft.volume=16&rft.issue=24&rft.spage=8953&rft.epage=8962&rft.pages=8953-8962&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2607223&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2016_2607223%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7563298&rfr_iscdi=true |