Object-Level Video Advertising: An Optimization Framework

In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2017-04, Vol.13 (2), p.520-531
Hauptverfasser: Haijun Zhang, Xiong Cao, Ho, John K. L., Chow, Tommy W. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue 2
container_start_page 520
container_title IEEE transactions on industrial informatics
container_volume 13
creator Haijun Zhang
Xiong Cao
Ho, John K. L.
Chow, Tommy W. S.
description In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.
doi_str_mv 10.1109/TII.2016.2605629
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7558199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7558199</ieee_id><sourcerecordid>1891167987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc-d7SZMm3sZwOhjsMr2GNnmVzK2daTdxf70dG57ed_h934MfY_cII0QwT8vZbMQB1YgrkIqbCzZAk2EKIOGyz1JiKjiIa3bTtisAkYMwA2YW5Ypcl85pT-vkI3hqkrHfU-xCG-rP52RcJ4ttFzbhUHShqZNpLDb008SvW3ZVFeuW7s53yN6nL8vJWzpfvM4m43nqhMIu9UplGrCUoLj3RpQCS-CCVIZKqlxr1AoNQpFngL4yDrlyHCnLKoPeOTFkj6fdbWy-d9R2dtXsYt2_tKgNosqNznsKTpSLTdtGquw2hk0Rfy2CPQqyvSB7FGTPgvrKw6kSiOgfz6XUaIz4Az9HXro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891167987</pqid></control><display><type>article</type><title>Object-Level Video Advertising: An Optimization Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Haijun Zhang ; Xiong Cao ; Ho, John K. L. ; Chow, Tommy W. S.</creator><creatorcontrib>Haijun Zhang ; Xiong Cao ; Ho, John K. L. ; Chow, Tommy W. S.</creatorcontrib><description>In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2016.2605629</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advertising ; Artificial neural networks ; Content based ; Feature extraction ; Feature recognition ; Genetic algorithms ; Heuristic methods ; in-video ads ; Informatics ; Neural networks ; object level ; Optimization ; Receivers ; video advertising</subject><ispartof>IEEE transactions on industrial informatics, 2017-04, Vol.13 (2), p.520-531</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</citedby><cites>FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7558199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7558199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haijun Zhang</creatorcontrib><creatorcontrib>Xiong Cao</creatorcontrib><creatorcontrib>Ho, John K. L.</creatorcontrib><creatorcontrib>Chow, Tommy W. S.</creatorcontrib><title>Object-Level Video Advertising: An Optimization Framework</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.</description><subject>Advertising</subject><subject>Artificial neural networks</subject><subject>Content based</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>in-video ads</subject><subject>Informatics</subject><subject>Neural networks</subject><subject>object level</subject><subject>Optimization</subject><subject>Receivers</subject><subject>video advertising</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc-d7SZMm3sZwOhjsMr2GNnmVzK2daTdxf70dG57ed_h934MfY_cII0QwT8vZbMQB1YgrkIqbCzZAk2EKIOGyz1JiKjiIa3bTtisAkYMwA2YW5Ypcl85pT-vkI3hqkrHfU-xCG-rP52RcJ4ttFzbhUHShqZNpLDb008SvW3ZVFeuW7s53yN6nL8vJWzpfvM4m43nqhMIu9UplGrCUoLj3RpQCS-CCVIZKqlxr1AoNQpFngL4yDrlyHCnLKoPeOTFkj6fdbWy-d9R2dtXsYt2_tKgNosqNznsKTpSLTdtGquw2hk0Rfy2CPQqyvSB7FGTPgvrKw6kSiOgfz6XUaIz4Az9HXro</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Haijun Zhang</creator><creator>Xiong Cao</creator><creator>Ho, John K. L.</creator><creator>Chow, Tommy W. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170401</creationdate><title>Object-Level Video Advertising: An Optimization Framework</title><author>Haijun Zhang ; Xiong Cao ; Ho, John K. L. ; Chow, Tommy W. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advertising</topic><topic>Artificial neural networks</topic><topic>Content based</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>in-video ads</topic><topic>Informatics</topic><topic>Neural networks</topic><topic>object level</topic><topic>Optimization</topic><topic>Receivers</topic><topic>video advertising</topic><toplevel>online_resources</toplevel><creatorcontrib>Haijun Zhang</creatorcontrib><creatorcontrib>Xiong Cao</creatorcontrib><creatorcontrib>Ho, John K. L.</creatorcontrib><creatorcontrib>Chow, Tommy W. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haijun Zhang</au><au>Xiong Cao</au><au>Ho, John K. L.</au><au>Chow, Tommy W. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object-Level Video Advertising: An Optimization Framework</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>520</spage><epage>531</epage><pages>520-531</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2016.2605629</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2017-04, Vol.13 (2), p.520-531
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_7558199
source IEEE Electronic Library (IEL)
subjects Advertising
Artificial neural networks
Content based
Feature extraction
Feature recognition
Genetic algorithms
Heuristic methods
in-video ads
Informatics
Neural networks
object level
Optimization
Receivers
video advertising
title Object-Level Video Advertising: An Optimization Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object-Level%20Video%20Advertising:%20An%20Optimization%20Framework&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Haijun%20Zhang&rft.date=2017-04-01&rft.volume=13&rft.issue=2&rft.spage=520&rft.epage=531&rft.pages=520-531&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2016.2605629&rft_dat=%3Cproquest_RIE%3E1891167987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891167987&rft_id=info:pmid/&rft_ieee_id=7558199&rfr_iscdi=true