Object-Level Video Advertising: An Optimization Framework
In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2017-04, Vol.13 (2), p.520-531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 2 |
container_start_page | 520 |
container_title | IEEE transactions on industrial informatics |
container_volume | 13 |
creator | Haijun Zhang Xiong Cao Ho, John K. L. Chow, Tommy W. S. |
description | In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising. |
doi_str_mv | 10.1109/TII.2016.2605629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7558199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7558199</ieee_id><sourcerecordid>1891167987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc-d7SZMm3sZwOhjsMr2GNnmVzK2daTdxf70dG57ed_h934MfY_cII0QwT8vZbMQB1YgrkIqbCzZAk2EKIOGyz1JiKjiIa3bTtisAkYMwA2YW5Ypcl85pT-vkI3hqkrHfU-xCG-rP52RcJ4ttFzbhUHShqZNpLDb008SvW3ZVFeuW7s53yN6nL8vJWzpfvM4m43nqhMIu9UplGrCUoLj3RpQCS-CCVIZKqlxr1AoNQpFngL4yDrlyHCnLKoPeOTFkj6fdbWy-d9R2dtXsYt2_tKgNosqNznsKTpSLTdtGquw2hk0Rfy2CPQqyvSB7FGTPgvrKw6kSiOgfz6XUaIz4Az9HXro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891167987</pqid></control><display><type>article</type><title>Object-Level Video Advertising: An Optimization Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Haijun Zhang ; Xiong Cao ; Ho, John K. L. ; Chow, Tommy W. S.</creator><creatorcontrib>Haijun Zhang ; Xiong Cao ; Ho, John K. L. ; Chow, Tommy W. S.</creatorcontrib><description>In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2016.2605629</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Advertising ; Artificial neural networks ; Content based ; Feature extraction ; Feature recognition ; Genetic algorithms ; Heuristic methods ; in-video ads ; Informatics ; Neural networks ; object level ; Optimization ; Receivers ; video advertising</subject><ispartof>IEEE transactions on industrial informatics, 2017-04, Vol.13 (2), p.520-531</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</citedby><cites>FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7558199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7558199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haijun Zhang</creatorcontrib><creatorcontrib>Xiong Cao</creatorcontrib><creatorcontrib>Ho, John K. L.</creatorcontrib><creatorcontrib>Chow, Tommy W. S.</creatorcontrib><title>Object-Level Video Advertising: An Optimization Framework</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.</description><subject>Advertising</subject><subject>Artificial neural networks</subject><subject>Content based</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>in-video ads</subject><subject>Informatics</subject><subject>Neural networks</subject><subject>object level</subject><subject>Optimization</subject><subject>Receivers</subject><subject>video advertising</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc-d7SZMm3sZwOhjsMr2GNnmVzK2daTdxf70dG57ed_h934MfY_cII0QwT8vZbMQB1YgrkIqbCzZAk2EKIOGyz1JiKjiIa3bTtisAkYMwA2YW5Ypcl85pT-vkI3hqkrHfU-xCG-rP52RcJ4ttFzbhUHShqZNpLDb008SvW3ZVFeuW7s53yN6nL8vJWzpfvM4m43nqhMIu9UplGrCUoLj3RpQCS-CCVIZKqlxr1AoNQpFngL4yDrlyHCnLKoPeOTFkj6fdbWy-d9R2dtXsYt2_tKgNosqNznsKTpSLTdtGquw2hk0Rfy2CPQqyvSB7FGTPgvrKw6kSiOgfz6XUaIz4Az9HXro</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Haijun Zhang</creator><creator>Xiong Cao</creator><creator>Ho, John K. L.</creator><creator>Chow, Tommy W. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170401</creationdate><title>Object-Level Video Advertising: An Optimization Framework</title><author>Haijun Zhang ; Xiong Cao ; Ho, John K. L. ; Chow, Tommy W. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d664801b5062dd93b31b023e6416567881861910a7401df9c126c21e44f91dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advertising</topic><topic>Artificial neural networks</topic><topic>Content based</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>in-video ads</topic><topic>Informatics</topic><topic>Neural networks</topic><topic>object level</topic><topic>Optimization</topic><topic>Receivers</topic><topic>video advertising</topic><toplevel>online_resources</toplevel><creatorcontrib>Haijun Zhang</creatorcontrib><creatorcontrib>Xiong Cao</creatorcontrib><creatorcontrib>Ho, John K. L.</creatorcontrib><creatorcontrib>Chow, Tommy W. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haijun Zhang</au><au>Xiong Cao</au><au>Ho, John K. L.</au><au>Chow, Tommy W. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object-Level Video Advertising: An Optimization Framework</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>520</spage><epage>531</epage><pages>520-531</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this paper, we present new models and algorithms for object-level video advertising. A framework that aims to embed content-relevant ads within a video stream is investigated in this context. First, a comprehensive optimization model is designed to minimize intrusiveness to viewers when ads are inserted in a video. For human clothing advertising, we design a deep convolutional neural network using face features to recognize human genders in a video stream. Human parts alignment is then implemented to extract human part features that are used for clothing retrieval. Second, we develop a heuristic algorithm to solve the proposed optimization problem. For comparison, we also employ the genetic algorithm to find solutions approaching the global optimum. Our novel framework is examined in various types of videos. Experimental results demonstrate the effectiveness of the proposed method for object-level video advertising.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2016.2605629</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2017-04, Vol.13 (2), p.520-531 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_7558199 |
source | IEEE Electronic Library (IEL) |
subjects | Advertising Artificial neural networks Content based Feature extraction Feature recognition Genetic algorithms Heuristic methods in-video ads Informatics Neural networks object level Optimization Receivers video advertising |
title | Object-Level Video Advertising: An Optimization Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object-Level%20Video%20Advertising:%20An%20Optimization%20Framework&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Haijun%20Zhang&rft.date=2017-04-01&rft.volume=13&rft.issue=2&rft.spage=520&rft.epage=531&rft.pages=520-531&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2016.2605629&rft_dat=%3Cproquest_RIE%3E1891167987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891167987&rft_id=info:pmid/&rft_ieee_id=7558199&rfr_iscdi=true |