When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing

People nowadays almost want everything at their fingertips, from business to entertainment, and meanwhile they do not want to leak their sensitive data. Strong information protection can be a competitive advantage, but preserving privacy is a real challenge when people use the mobile apps in the sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2018-09, Vol.11 (5), p.864-878
Hauptverfasser: Liu, Rui, Cao, Jiannong, Zhang, Kehuan, Gao, Wenyu, Liang, Junbin, Yang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878
container_issue 5
container_start_page 864
container_title IEEE transactions on services computing
container_volume 11
creator Liu, Rui
Cao, Jiannong
Zhang, Kehuan
Gao, Wenyu
Liang, Junbin
Yang, Lei
description People nowadays almost want everything at their fingertips, from business to entertainment, and meanwhile they do not want to leak their sensitive data. Strong information protection can be a competitive advantage, but preserving privacy is a real challenge when people use the mobile apps in the smartphone. If they are too lax with privacy preserving, important or sensitive information could be lost. If they are too tight with privacy, making users jump through endless hoops to access the data they need to get their work done, productivity can nosedive. Thus, striking a balance between privacy and usability in mobile applications can be difficult. Leveraging the privacy permission settings in mobile operating systems, our basic idea to address this issue is to provide proper recommendations about the settings so that the users can preserve their sensitive information and maintain the usability of apps. In this paper, we propose an unobtrusive recommendation system to implement this idea, which can crowdsource users' privacy permission settings and generate the recommendations for them accordingly. Besides, our system allows users to provide feedback to revise the recommendations for getting better performance and adapting different scenarios. For the evaluation, we collected users' preferences from 382 participants on Amazon Technical Turks and released our system to users in the real world for 10 days. According to the study, our system can make appropriate recommendations which can meet participants' privacy expectation and mobile apps' usability.
doi_str_mv 10.1109/TSC.2016.2605089
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7558179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7558179</ieee_id><sourcerecordid>2117015127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-1dd973b5546065042edfad5eb158a8ff0cc8a1fbf8e36c4d0989bf6474c9bbc03</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4soOKfvgi8BnzeTtkkT32bxF0wcbsPHkiYXzVibmnST_vd2bAyf7o77fL93fKPomuAxIVjcLeb5OMaEjWOGKebiJBoQkYgRSbL09F9_Hl2EsMKYxZyLQdR9fkONZt5uperQG0Ab0DLI0q5t292jZe3K1m-C3cIRmoGvbAjW1egDlKsqqLVsd-O8Cy1UyDiP3lxvAWjSNAE9yAAa9fvcu18d3MYrW39dRmdGrgNcHeowWj49LvKX0fT9-TWfTEcqYaQdEa1FlpSUpgwzitMYtJGaQkkol9wYrBSXxJSGQ8JUqrHgojQszVIlylLhZBjd7n0b7342ENpi1X9Q9yeLmJAME0rirKfwnlLeheDBFI23lfRdQXCxC7joAy52AReHgHvJzV5iAeCIZ5RykonkD5FqeWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117015127</pqid></control><display><type>article</type><title>When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Rui ; Cao, Jiannong ; Zhang, Kehuan ; Gao, Wenyu ; Liang, Junbin ; Yang, Lei</creator><creatorcontrib>Liu, Rui ; Cao, Jiannong ; Zhang, Kehuan ; Gao, Wenyu ; Liang, Junbin ; Yang, Lei</creatorcontrib><description>People nowadays almost want everything at their fingertips, from business to entertainment, and meanwhile they do not want to leak their sensitive data. Strong information protection can be a competitive advantage, but preserving privacy is a real challenge when people use the mobile apps in the smartphone. If they are too lax with privacy preserving, important or sensitive information could be lost. If they are too tight with privacy, making users jump through endless hoops to access the data they need to get their work done, productivity can nosedive. Thus, striking a balance between privacy and usability in mobile applications can be difficult. Leveraging the privacy permission settings in mobile operating systems, our basic idea to address this issue is to provide proper recommendations about the settings so that the users can preserve their sensitive information and maintain the usability of apps. In this paper, we propose an unobtrusive recommendation system to implement this idea, which can crowdsource users' privacy permission settings and generate the recommendations for them accordingly. Besides, our system allows users to provide feedback to revise the recommendations for getting better performance and adapting different scenarios. For the evaluation, we collected users' preferences from 382 participants on Amazon Technical Turks and released our system to users in the real world for 10 days. According to the study, our system can make appropriate recommendations which can meet participants' privacy expectation and mobile apps' usability.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2016.2605089</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Androids ; Applications programs ; Business competition ; Collaboration ; Crowdsourcing ; Data privacy ; Electronic commerce ; Hoops ; Humanoid robots ; Mobile communication ; Mobile computing ; Mobile operating systems ; Mobile privacy ; permission ; Privacy ; recommendation ; Recommender systems ; Smartphones ; Usability</subject><ispartof>IEEE transactions on services computing, 2018-09, Vol.11 (5), p.864-878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-1dd973b5546065042edfad5eb158a8ff0cc8a1fbf8e36c4d0989bf6474c9bbc03</citedby><cites>FETCH-LOGICAL-c361t-1dd973b5546065042edfad5eb158a8ff0cc8a1fbf8e36c4d0989bf6474c9bbc03</cites><orcidid>0000-0001-9061-787X ; 0000-0002-2725-2529 ; 0000-0001-9328-4919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7558179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7558179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Cao, Jiannong</creatorcontrib><creatorcontrib>Zhang, Kehuan</creatorcontrib><creatorcontrib>Gao, Wenyu</creatorcontrib><creatorcontrib>Liang, Junbin</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><title>When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>People nowadays almost want everything at their fingertips, from business to entertainment, and meanwhile they do not want to leak their sensitive data. Strong information protection can be a competitive advantage, but preserving privacy is a real challenge when people use the mobile apps in the smartphone. If they are too lax with privacy preserving, important or sensitive information could be lost. If they are too tight with privacy, making users jump through endless hoops to access the data they need to get their work done, productivity can nosedive. Thus, striking a balance between privacy and usability in mobile applications can be difficult. Leveraging the privacy permission settings in mobile operating systems, our basic idea to address this issue is to provide proper recommendations about the settings so that the users can preserve their sensitive information and maintain the usability of apps. In this paper, we propose an unobtrusive recommendation system to implement this idea, which can crowdsource users' privacy permission settings and generate the recommendations for them accordingly. Besides, our system allows users to provide feedback to revise the recommendations for getting better performance and adapting different scenarios. For the evaluation, we collected users' preferences from 382 participants on Amazon Technical Turks and released our system to users in the real world for 10 days. According to the study, our system can make appropriate recommendations which can meet participants' privacy expectation and mobile apps' usability.</description><subject>Androids</subject><subject>Applications programs</subject><subject>Business competition</subject><subject>Collaboration</subject><subject>Crowdsourcing</subject><subject>Data privacy</subject><subject>Electronic commerce</subject><subject>Hoops</subject><subject>Humanoid robots</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>Mobile operating systems</subject><subject>Mobile privacy</subject><subject>permission</subject><subject>Privacy</subject><subject>recommendation</subject><subject>Recommender systems</subject><subject>Smartphones</subject><subject>Usability</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4soOKfvgi8BnzeTtkkT32bxF0wcbsPHkiYXzVibmnST_vd2bAyf7o77fL93fKPomuAxIVjcLeb5OMaEjWOGKebiJBoQkYgRSbL09F9_Hl2EsMKYxZyLQdR9fkONZt5uperQG0Ab0DLI0q5t292jZe3K1m-C3cIRmoGvbAjW1egDlKsqqLVsd-O8Cy1UyDiP3lxvAWjSNAE9yAAa9fvcu18d3MYrW39dRmdGrgNcHeowWj49LvKX0fT9-TWfTEcqYaQdEa1FlpSUpgwzitMYtJGaQkkol9wYrBSXxJSGQ8JUqrHgojQszVIlylLhZBjd7n0b7342ENpi1X9Q9yeLmJAME0rirKfwnlLeheDBFI23lfRdQXCxC7joAy52AReHgHvJzV5iAeCIZ5RykonkD5FqeWI</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Liu, Rui</creator><creator>Cao, Jiannong</creator><creator>Zhang, Kehuan</creator><creator>Gao, Wenyu</creator><creator>Liang, Junbin</creator><creator>Yang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9061-787X</orcidid><orcidid>https://orcid.org/0000-0002-2725-2529</orcidid><orcidid>https://orcid.org/0000-0001-9328-4919</orcidid></search><sort><creationdate>20180901</creationdate><title>When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing</title><author>Liu, Rui ; Cao, Jiannong ; Zhang, Kehuan ; Gao, Wenyu ; Liang, Junbin ; Yang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-1dd973b5546065042edfad5eb158a8ff0cc8a1fbf8e36c4d0989bf6474c9bbc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Androids</topic><topic>Applications programs</topic><topic>Business competition</topic><topic>Collaboration</topic><topic>Crowdsourcing</topic><topic>Data privacy</topic><topic>Electronic commerce</topic><topic>Hoops</topic><topic>Humanoid robots</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>Mobile operating systems</topic><topic>Mobile privacy</topic><topic>permission</topic><topic>Privacy</topic><topic>recommendation</topic><topic>Recommender systems</topic><topic>Smartphones</topic><topic>Usability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Cao, Jiannong</creatorcontrib><creatorcontrib>Zhang, Kehuan</creatorcontrib><creatorcontrib>Gao, Wenyu</creatorcontrib><creatorcontrib>Liang, Junbin</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Rui</au><au>Cao, Jiannong</au><au>Zhang, Kehuan</au><au>Gao, Wenyu</au><au>Liang, Junbin</au><au>Yang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>5</issue><spage>864</spage><epage>878</epage><pages>864-878</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>People nowadays almost want everything at their fingertips, from business to entertainment, and meanwhile they do not want to leak their sensitive data. Strong information protection can be a competitive advantage, but preserving privacy is a real challenge when people use the mobile apps in the smartphone. If they are too lax with privacy preserving, important or sensitive information could be lost. If they are too tight with privacy, making users jump through endless hoops to access the data they need to get their work done, productivity can nosedive. Thus, striking a balance between privacy and usability in mobile applications can be difficult. Leveraging the privacy permission settings in mobile operating systems, our basic idea to address this issue is to provide proper recommendations about the settings so that the users can preserve their sensitive information and maintain the usability of apps. In this paper, we propose an unobtrusive recommendation system to implement this idea, which can crowdsource users' privacy permission settings and generate the recommendations for them accordingly. Besides, our system allows users to provide feedback to revise the recommendations for getting better performance and adapting different scenarios. For the evaluation, we collected users' preferences from 382 participants on Amazon Technical Turks and released our system to users in the real world for 10 days. According to the study, our system can make appropriate recommendations which can meet participants' privacy expectation and mobile apps' usability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2016.2605089</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9061-787X</orcidid><orcidid>https://orcid.org/0000-0002-2725-2529</orcidid><orcidid>https://orcid.org/0000-0001-9328-4919</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2018-09, Vol.11 (5), p.864-878
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_7558179
source IEEE Electronic Library (IEL)
subjects Androids
Applications programs
Business competition
Collaboration
Crowdsourcing
Data privacy
Electronic commerce
Hoops
Humanoid robots
Mobile communication
Mobile computing
Mobile operating systems
Mobile privacy
permission
Privacy
recommendation
Recommender systems
Smartphones
Usability
title When Privacy Meets Usability: Unobtrusive Privacy Permission Recommendation System for Mobile Apps Based on Crowdsourcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20Privacy%20Meets%20Usability:%20Unobtrusive%20Privacy%20Permission%20Recommendation%20System%20for%20Mobile%20Apps%20Based%20on%20Crowdsourcing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Liu,%20Rui&rft.date=2018-09-01&rft.volume=11&rft.issue=5&rft.spage=864&rft.epage=878&rft.pages=864-878&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2016.2605089&rft_dat=%3Cproquest_RIE%3E2117015127%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117015127&rft_id=info:pmid/&rft_ieee_id=7558179&rfr_iscdi=true