Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation
This paper presents a system for calibrating the extrinsic parameters and timing offsets of an array of cameras, 3-D lidars, and global positioning system/inertial navigation system sensors, without the requirement of any markers or other calibration aids. The aim of the approach is to achieve calib...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2016-10, Vol.32 (5), p.1215-1229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1229 |
---|---|
container_issue | 5 |
container_start_page | 1215 |
container_title | IEEE transactions on robotics |
container_volume | 32 |
creator | Taylor, Zachary Nieto, Juan |
description | This paper presents a system for calibrating the extrinsic parameters and timing offsets of an array of cameras, 3-D lidars, and global positioning system/inertial navigation system sensors, without the requirement of any markers or other calibration aids. The aim of the approach is to achieve calibration accuracies comparable with state-of-the-art methods, while requiring less initial information about the system being calibrated and thus being more suitable for use by end users. The method operates by utilizing the motion of the system being calibrated. By estimating the motion each individual sensor observes, an estimate of the extrinsic calibration of the sensors is obtained. Our approach extends standard techniques for motion-based calibration by incorporating estimates of the accuracy of each sensor's readings. This yields a probabilistic approach that calibrates all sensors simultaneously and facilitates the estimation of the uncertainty in the final calibration. In addition, we combine this motion-based approach with appearance information. This gives an approach that requires no initial calibration estimate and takes advantage of all available alignment information to provide an accurate and robust calibration for the system. The new framework is validated with datasets collected with different platforms and different sensors' configurations, and compared with state-of-the-art approaches. |
doi_str_mv | 10.1109/TRO.2016.2596771 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7555301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7555301</ieee_id><sourcerecordid>10_1109_TRO_2016_2596771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-5113d686c5af674530b2f8e7653a026e3d03db821bbd34f2c94babcef3b499f43</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUv-wK6Tz90cdalVaCloe16STSKR7a4kK-i_N7XF0wzD-8wMD0K3BEpCQN1vXzclBSJLKpSsKnKGZkRxUgCX9XnuhaAFA1VfoquUPgAoV8BmaLcepzAOxaNOzuJG98FEfZjg0eP1Vz-F_Wh1j9_ckMaIF99TDEMKXcJ6sHgb9mF4xxvvk5vwIuX0H3yNLrzuk7s51TnaPS22zXOx2ixfmodV0TGlpkIQwqysZSe0lxUXDAz1taukYBqodMwCs6amxBjLuKed4kabznlmuFKeszmC494ujilF59vPmF-IPy2B9qClzVrag5b2pCUjd0ckOOf-45UQ-Tphv69IX2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation</title><source>IEEE Xplore</source><creator>Taylor, Zachary ; Nieto, Juan</creator><creatorcontrib>Taylor, Zachary ; Nieto, Juan</creatorcontrib><description>This paper presents a system for calibrating the extrinsic parameters and timing offsets of an array of cameras, 3-D lidars, and global positioning system/inertial navigation system sensors, without the requirement of any markers or other calibration aids. The aim of the approach is to achieve calibration accuracies comparable with state-of-the-art methods, while requiring less initial information about the system being calibrated and thus being more suitable for use by end users. The method operates by utilizing the motion of the system being calibrated. By estimating the motion each individual sensor observes, an estimate of the extrinsic calibration of the sensors is obtained. Our approach extends standard techniques for motion-based calibration by incorporating estimates of the accuracy of each sensor's readings. This yields a probabilistic approach that calibrates all sensors simultaneously and facilitates the estimation of the uncertainty in the final calibration. In addition, we combine this motion-based approach with appearance information. This gives an approach that requires no initial calibration estimate and takes advantage of all available alignment information to provide an accurate and robust calibration for the system. The new framework is validated with datasets collected with different platforms and different sensors' configurations, and compared with state-of-the-art approaches.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2016.2596771</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Calibration and identification ; Cameras ; extrinsics ; field robots ; Laser radar ; Robot sensing systems ; Timing ; timing offset</subject><ispartof>IEEE transactions on robotics, 2016-10, Vol.32 (5), p.1215-1229</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-5113d686c5af674530b2f8e7653a026e3d03db821bbd34f2c94babcef3b499f43</citedby><cites>FETCH-LOGICAL-c399t-5113d686c5af674530b2f8e7653a026e3d03db821bbd34f2c94babcef3b499f43</cites><orcidid>0000-0002-5771-1300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7555301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7555301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taylor, Zachary</creatorcontrib><creatorcontrib>Nieto, Juan</creatorcontrib><title>Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This paper presents a system for calibrating the extrinsic parameters and timing offsets of an array of cameras, 3-D lidars, and global positioning system/inertial navigation system sensors, without the requirement of any markers or other calibration aids. The aim of the approach is to achieve calibration accuracies comparable with state-of-the-art methods, while requiring less initial information about the system being calibrated and thus being more suitable for use by end users. The method operates by utilizing the motion of the system being calibrated. By estimating the motion each individual sensor observes, an estimate of the extrinsic calibration of the sensors is obtained. Our approach extends standard techniques for motion-based calibration by incorporating estimates of the accuracy of each sensor's readings. This yields a probabilistic approach that calibrates all sensors simultaneously and facilitates the estimation of the uncertainty in the final calibration. In addition, we combine this motion-based approach with appearance information. This gives an approach that requires no initial calibration estimate and takes advantage of all available alignment information to provide an accurate and robust calibration for the system. The new framework is validated with datasets collected with different platforms and different sensors' configurations, and compared with state-of-the-art approaches.</description><subject>Calibration</subject><subject>Calibration and identification</subject><subject>Cameras</subject><subject>extrinsics</subject><subject>field robots</subject><subject>Laser radar</subject><subject>Robot sensing systems</subject><subject>Timing</subject><subject>timing offset</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUv-wK6Tz90cdalVaCloe16STSKR7a4kK-i_N7XF0wzD-8wMD0K3BEpCQN1vXzclBSJLKpSsKnKGZkRxUgCX9XnuhaAFA1VfoquUPgAoV8BmaLcepzAOxaNOzuJG98FEfZjg0eP1Vz-F_Wh1j9_ckMaIF99TDEMKXcJ6sHgb9mF4xxvvk5vwIuX0H3yNLrzuk7s51TnaPS22zXOx2ixfmodV0TGlpkIQwqysZSe0lxUXDAz1taukYBqodMwCs6amxBjLuKed4kabznlmuFKeszmC494ujilF59vPmF-IPy2B9qClzVrag5b2pCUjd0ckOOf-45UQ-Tphv69IX2I</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Taylor, Zachary</creator><creator>Nieto, Juan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5771-1300</orcidid></search><sort><creationdate>20161001</creationdate><title>Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation</title><author>Taylor, Zachary ; Nieto, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-5113d686c5af674530b2f8e7653a026e3d03db821bbd34f2c94babcef3b499f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calibration</topic><topic>Calibration and identification</topic><topic>Cameras</topic><topic>extrinsics</topic><topic>field robots</topic><topic>Laser radar</topic><topic>Robot sensing systems</topic><topic>Timing</topic><topic>timing offset</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Zachary</creatorcontrib><creatorcontrib>Nieto, Juan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taylor, Zachary</au><au>Nieto, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>32</volume><issue>5</issue><spage>1215</spage><epage>1229</epage><pages>1215-1229</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This paper presents a system for calibrating the extrinsic parameters and timing offsets of an array of cameras, 3-D lidars, and global positioning system/inertial navigation system sensors, without the requirement of any markers or other calibration aids. The aim of the approach is to achieve calibration accuracies comparable with state-of-the-art methods, while requiring less initial information about the system being calibrated and thus being more suitable for use by end users. The method operates by utilizing the motion of the system being calibrated. By estimating the motion each individual sensor observes, an estimate of the extrinsic calibration of the sensors is obtained. Our approach extends standard techniques for motion-based calibration by incorporating estimates of the accuracy of each sensor's readings. This yields a probabilistic approach that calibrates all sensors simultaneously and facilitates the estimation of the uncertainty in the final calibration. In addition, we combine this motion-based approach with appearance information. This gives an approach that requires no initial calibration estimate and takes advantage of all available alignment information to provide an accurate and robust calibration for the system. The new framework is validated with datasets collected with different platforms and different sensors' configurations, and compared with state-of-the-art approaches.</abstract><pub>IEEE</pub><doi>10.1109/TRO.2016.2596771</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5771-1300</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2016-10, Vol.32 (5), p.1215-1229 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_7555301 |
source | IEEE Xplore |
subjects | Calibration Calibration and identification Cameras extrinsics field robots Laser radar Robot sensing systems Timing timing offset |
title | Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion-Based%20Calibration%20of%20Multimodal%20Sensor%20Extrinsics%20and%20Timing%20Offset%20Estimation&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Taylor,%20Zachary&rft.date=2016-10-01&rft.volume=32&rft.issue=5&rft.spage=1215&rft.epage=1229&rft.pages=1215-1229&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2016.2596771&rft_dat=%3Ccrossref_RIE%3E10_1109_TRO_2016_2596771%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7555301&rfr_iscdi=true |