Pedestrian Tracking Using Online Boosted Random Ferns Learning in Far-Infrared Imagery for Safe Driving at Night

Pedestrian-vehicle accidents that occur at night are a major social problem worldwide. Advanced driver assistance systems that are equipped with cameras have been designed to automatically prevent such accidents. Among the various types of cameras used in such systems, far-infrared (FIR) cameras are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-01, Vol.18 (1), p.69-81
Hauptverfasser: Kwak, Joon-Young, Ko, Byoung Chul, Nam, Jae Yeal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pedestrian-vehicle accidents that occur at night are a major social problem worldwide. Advanced driver assistance systems that are equipped with cameras have been designed to automatically prevent such accidents. Among the various types of cameras used in such systems, far-infrared (FIR) cameras are favorable because they are invariant to illumination changes. Therefore, this paper focuses on a pedestrian nighttime tracking system with an FIR camera that is able to discern thermal energy and is mounted on the forward roof part of a vehicle. Since the temperature difference between the pedestrian and background depends on the season and the weather, we therefore propose two models to detect pedestrians according to the season and the weather, which are determined using Weber-Fechner's law. For tracking pedestrians, we perform real-time online learning to track pedestrians using boosted random ferns and update the trackers at each frame. In particular, we link detection responses to trajectories based on similarities in position, size, and appearance. There is no standard data set for evaluating the tracking performance using an FIR camera; thus, we created the Keimyung University tracking data set (KMUTD) by combining the KMU sudden pedestrian crossing (SPC) data set [21] for summer nights with additional tracking data for winter nights. The KMUTD contains video sequences involving a moving camera, moving pedestrians, sudden shape deformations, unexpected motion changes, and partial or full occlusions between pedestrians at night. The proposed algorithm is successfully applied to various pedestrian video sequences of the KMUTD; specifically, the proposed algorithm yields more accurate tracking performance than other existing methods.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2016.2569159