Front-End Isolated Quasi-Z-Source DC–DC Converter Modules in Series for High-Power Photovoltaic Systems—Part I: Configuration, Operation, and Evaluation

A quasi-Z-source modular cascaded converter (qZS-MCC) is proposed for dc integration of high-power photovoltaic (PV) systems. The qZS-MCC comprises series-connected front-end isolated qZS half-bridge (HB) dc-dc converter submodules (SMs). With the front-end isolation, the qZS-MCC achieves high-volta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-01, Vol.64 (1), p.347-358
Hauptverfasser: Liu, Yushan, Abu-Rub, Haitham, Ge, Baoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 1
container_start_page 347
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Liu, Yushan
Abu-Rub, Haitham
Ge, Baoming
description A quasi-Z-source modular cascaded converter (qZS-MCC) is proposed for dc integration of high-power photovoltaic (PV) systems. The qZS-MCC comprises series-connected front-end isolated qZS half-bridge (HB) dc-dc converter submodules (SMs). With the front-end isolation, the qZS-MCC achieves high-voltage dc capability, while maintaining modularity and PV panel grounded. The post-stage qZS-HB handles the PV voltage and power flows, dc-link voltage balance, and output-series power integration. Whereas, the front-end isolation converters of all SMs perform a constant duty cycle, lowing the control complexity. There is no double-line-frequency power flowing through the dc-side PV panels, qZS inductors, and qZS capacitors in the qZS-MCC, so small qZS impedance is possible compared to the existing qZS cascaded multilevel inverter. The configuration, operating principle, power loss evaluation, and passive components design of the proposed system are investigated in this part of the paper. The system control, modeling, and corresponding verifications are stated in Part II of this paper.
doi_str_mv 10.1109/TIE.2016.2598673
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7539365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7539365</ieee_id><sourcerecordid>1848270042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d4019340cb7c5a0c3ee57a3f101c89b12c392cc9dc079b36f8f4ab183805e2013</originalsourceid><addsrcrecordid>eNo9UU1PGzEUtKoiNYXekXqx1CsO9nq9a_dWLQEigRIUeuGycrxvwWhZB9sbxI3_0B75dfkldRrg9OZJM-9jBqFDRseMUXV8PZ2MM8qKcSaULEr-CY2YECVRKpef0YhmpSSU5sUX9DWEe0pZLpgYoddT7_pIJn2Dp8F1OkKDrwYdLLkhCzd4A_ik2rz8Oalw5fo1-AgeX7pm6CBg2-MFeJtQ6zw-t7d3ZO6eEmF-56Jbuy5qa_DiOUR4CJuXv3PtI57-3E5q7e3gdbSuP8KzFbxDne6YrHU3_O8P0F6ruwDf3uo--n06ua7OycXsbFr9uiCGcxlJk1OmeE7NsjRCU8MBRKl5yygzUi1ZZrjKjFGNoaVa8qKVba6XTHJJBSTP-D76sZu78u5xgBDr-_R6n1bWTOYyK5NxWWLRHct4F4KHtl55-6D9c81ovc2gThnU2wzqtwyS5PtOYgHgg14Krngh-D_c9oVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848270042</pqid></control><display><type>article</type><title>Front-End Isolated Quasi-Z-Source DC–DC Converter Modules in Series for High-Power Photovoltaic Systems—Part I: Configuration, Operation, and Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yushan ; Abu-Rub, Haitham ; Ge, Baoming</creator><creatorcontrib>Liu, Yushan ; Abu-Rub, Haitham ; Ge, Baoming</creatorcontrib><description>A quasi-Z-source modular cascaded converter (qZS-MCC) is proposed for dc integration of high-power photovoltaic (PV) systems. The qZS-MCC comprises series-connected front-end isolated qZS half-bridge (HB) dc-dc converter submodules (SMs). With the front-end isolation, the qZS-MCC achieves high-voltage dc capability, while maintaining modularity and PV panel grounded. The post-stage qZS-HB handles the PV voltage and power flows, dc-link voltage balance, and output-series power integration. Whereas, the front-end isolation converters of all SMs perform a constant duty cycle, lowing the control complexity. There is no double-line-frequency power flowing through the dc-side PV panels, qZS inductors, and qZS capacitors in the qZS-MCC, so small qZS impedance is possible compared to the existing qZS cascaded multilevel inverter. The configuration, operating principle, power loss evaluation, and passive components design of the proposed system are investigated in this part of the paper. The system control, modeling, and corresponding verifications are stated in Part II of this paper.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2016.2598673</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Configurations ; DC-DC power converters ; DC–DC power conversion ; Electric bridges ; galvanic isolation ; Impedance ; Inductors ; Inverters ; Modularity ; Passive components ; Photovoltaic cells ; photovoltaic power system ; Power flow ; Power systems ; quasi-Z-source converter ; Voltage control ; Voltage converters (DC to DC)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-01, Vol.64 (1), p.347-358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d4019340cb7c5a0c3ee57a3f101c89b12c392cc9dc079b36f8f4ab183805e2013</citedby><cites>FETCH-LOGICAL-c338t-d4019340cb7c5a0c3ee57a3f101c89b12c392cc9dc079b36f8f4ab183805e2013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7539365$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Liu, Yushan</creatorcontrib><creatorcontrib>Abu-Rub, Haitham</creatorcontrib><creatorcontrib>Ge, Baoming</creatorcontrib><title>Front-End Isolated Quasi-Z-Source DC–DC Converter Modules in Series for High-Power Photovoltaic Systems—Part I: Configuration, Operation, and Evaluation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A quasi-Z-source modular cascaded converter (qZS-MCC) is proposed for dc integration of high-power photovoltaic (PV) systems. The qZS-MCC comprises series-connected front-end isolated qZS half-bridge (HB) dc-dc converter submodules (SMs). With the front-end isolation, the qZS-MCC achieves high-voltage dc capability, while maintaining modularity and PV panel grounded. The post-stage qZS-HB handles the PV voltage and power flows, dc-link voltage balance, and output-series power integration. Whereas, the front-end isolation converters of all SMs perform a constant duty cycle, lowing the control complexity. There is no double-line-frequency power flowing through the dc-side PV panels, qZS inductors, and qZS capacitors in the qZS-MCC, so small qZS impedance is possible compared to the existing qZS cascaded multilevel inverter. The configuration, operating principle, power loss evaluation, and passive components design of the proposed system are investigated in this part of the paper. The system control, modeling, and corresponding verifications are stated in Part II of this paper.</description><subject>Capacitors</subject><subject>Configurations</subject><subject>DC-DC power converters</subject><subject>DC–DC power conversion</subject><subject>Electric bridges</subject><subject>galvanic isolation</subject><subject>Impedance</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Modularity</subject><subject>Passive components</subject><subject>Photovoltaic cells</subject><subject>photovoltaic power system</subject><subject>Power flow</subject><subject>Power systems</subject><subject>quasi-Z-source converter</subject><subject>Voltage control</subject><subject>Voltage converters (DC to DC)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9UU1PGzEUtKoiNYXekXqx1CsO9nq9a_dWLQEigRIUeuGycrxvwWhZB9sbxI3_0B75dfkldRrg9OZJM-9jBqFDRseMUXV8PZ2MM8qKcSaULEr-CY2YECVRKpef0YhmpSSU5sUX9DWEe0pZLpgYoddT7_pIJn2Dp8F1OkKDrwYdLLkhCzd4A_ik2rz8Oalw5fo1-AgeX7pm6CBg2-MFeJtQ6zw-t7d3ZO6eEmF-56Jbuy5qa_DiOUR4CJuXv3PtI57-3E5q7e3gdbSuP8KzFbxDne6YrHU3_O8P0F6ruwDf3uo--n06ua7OycXsbFr9uiCGcxlJk1OmeE7NsjRCU8MBRKl5yygzUi1ZZrjKjFGNoaVa8qKVba6XTHJJBSTP-D76sZu78u5xgBDr-_R6n1bWTOYyK5NxWWLRHct4F4KHtl55-6D9c81ovc2gThnU2wzqtwyS5PtOYgHgg14Krngh-D_c9oVE</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Liu, Yushan</creator><creator>Abu-Rub, Haitham</creator><creator>Ge, Baoming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201701</creationdate><title>Front-End Isolated Quasi-Z-Source DC–DC Converter Modules in Series for High-Power Photovoltaic Systems—Part I: Configuration, Operation, and Evaluation</title><author>Liu, Yushan ; Abu-Rub, Haitham ; Ge, Baoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d4019340cb7c5a0c3ee57a3f101c89b12c392cc9dc079b36f8f4ab183805e2013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitors</topic><topic>Configurations</topic><topic>DC-DC power converters</topic><topic>DC–DC power conversion</topic><topic>Electric bridges</topic><topic>galvanic isolation</topic><topic>Impedance</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Modularity</topic><topic>Passive components</topic><topic>Photovoltaic cells</topic><topic>photovoltaic power system</topic><topic>Power flow</topic><topic>Power systems</topic><topic>quasi-Z-source converter</topic><topic>Voltage control</topic><topic>Voltage converters (DC to DC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yushan</creatorcontrib><creatorcontrib>Abu-Rub, Haitham</creatorcontrib><creatorcontrib>Ge, Baoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yushan</au><au>Abu-Rub, Haitham</au><au>Ge, Baoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Front-End Isolated Quasi-Z-Source DC–DC Converter Modules in Series for High-Power Photovoltaic Systems—Part I: Configuration, Operation, and Evaluation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-01</date><risdate>2017</risdate><volume>64</volume><issue>1</issue><spage>347</spage><epage>358</epage><pages>347-358</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A quasi-Z-source modular cascaded converter (qZS-MCC) is proposed for dc integration of high-power photovoltaic (PV) systems. The qZS-MCC comprises series-connected front-end isolated qZS half-bridge (HB) dc-dc converter submodules (SMs). With the front-end isolation, the qZS-MCC achieves high-voltage dc capability, while maintaining modularity and PV panel grounded. The post-stage qZS-HB handles the PV voltage and power flows, dc-link voltage balance, and output-series power integration. Whereas, the front-end isolation converters of all SMs perform a constant duty cycle, lowing the control complexity. There is no double-line-frequency power flowing through the dc-side PV panels, qZS inductors, and qZS capacitors in the qZS-MCC, so small qZS impedance is possible compared to the existing qZS cascaded multilevel inverter. The configuration, operating principle, power loss evaluation, and passive components design of the proposed system are investigated in this part of the paper. The system control, modeling, and corresponding verifications are stated in Part II of this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2016.2598673</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-01, Vol.64 (1), p.347-358
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_7539365
source IEEE Electronic Library (IEL)
subjects Capacitors
Configurations
DC-DC power converters
DC–DC power conversion
Electric bridges
galvanic isolation
Impedance
Inductors
Inverters
Modularity
Passive components
Photovoltaic cells
photovoltaic power system
Power flow
Power systems
quasi-Z-source converter
Voltage control
Voltage converters (DC to DC)
title Front-End Isolated Quasi-Z-Source DC–DC Converter Modules in Series for High-Power Photovoltaic Systems—Part I: Configuration, Operation, and Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Front-End%20Isolated%20Quasi-Z-Source%20DC%E2%80%93DC%20Converter%20Modules%20in%20Series%20for%20High-Power%20Photovoltaic%20Systems%E2%80%94Part%20I:%20Configuration,%20Operation,%20and%20Evaluation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Liu,%20Yushan&rft.date=2017-01&rft.volume=64&rft.issue=1&rft.spage=347&rft.epage=358&rft.pages=347-358&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2016.2598673&rft_dat=%3Cproquest_ieee_%3E1848270042%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848270042&rft_id=info:pmid/&rft_ieee_id=7539365&rfr_iscdi=true