Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis

Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2017-01, Vol.23 (1), p.241-250
Hauptverfasser: Sacha, Dominik, Leishi Zhang, Sedlmair, Michael, Lee, John A., Peltonen, Jaakko, Weiskopf, Daniel, North, Stephen C., Keim, Daniel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1
container_start_page 241
container_title IEEE transactions on visualization and computer graphics
container_volume 23
creator Sacha, Dominik
Leishi Zhang
Sedlmair, Michael
Lee, John A.
Peltonen, Jaakko
Weiskopf, Daniel
North, Stephen C.
Keim, Daniel A.
description Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a "human in the loop" process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities.
doi_str_mv 10.1109/TVCG.2016.2598495
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7536217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7536217</ieee_id><sourcerecordid>1843919982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4284fdbc9194935707fd3ca489c121de4a4cf73e1ad7ecd182b2ab33b534e89f3</originalsourceid><addsrcrecordid>eNpdkM1LxDAQxYMofv8BIkjBi5eumSRtEm_LqquwIKwf15KmU4x0t5q0yP73prurB08zw_ze4_EIOQM6AqD6-uVtMh0xCvmIZVoJne2QQ9ACUprRfDfuVMqU5Sw_IEchfFAKQii9Tw6YVDIDAYdk_uZCb5rkcdmhN7Zz7TL5dt17cusWuAzxNI3rVskcq379vUnGyXPn49F7rJKZG3TDnowjugounJC92jQBT7fzmLze371MHtLZ0_RxMp6llmvWpYIpUVel1TGx5pmksq64NTGgBQYVCiNsLTmCqSTaChQrmSk5LzMuUOmaH5Orje-nb796DF2xcMFi05gltn0oQAkezbViEb38h360vY951xRjimkOkYINZX0bgse6-PRuYfyqAFoMhRdD4cVQeLEtPGouts59ucDqT_HbcATON4BDxL-3zHjOQPIfH62Eng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842282931</pqid></control><display><type>article</type><title>Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Sacha, Dominik ; Leishi Zhang ; Sedlmair, Michael ; Lee, John A. ; Peltonen, Jaakko ; Weiskopf, Daniel ; North, Stephen C. ; Keim, Daniel A.</creator><creatorcontrib>Sacha, Dominik ; Leishi Zhang ; Sedlmair, Michael ; Lee, John A. ; Peltonen, Jaakko ; Weiskopf, Daniel ; North, Stephen C. ; Keim, Daniel A.</creatorcontrib><description>Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a "human in the loop" process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2016.2598495</identifier><identifier>PMID: 27875141</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Analytical models ; Data analysis ; Data models ; Data visualization ; Dimensional changes ; dimensionality reduction ; Interactive control ; Interactive systems ; Interactive visualization ; Machine learning ; Machine learning algorithms ; Manuals ; Multidimensional data ; Reduction ; Systems analysis ; visual analytics ; Visual flight ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2017-01, Vol.23 (1), p.241-250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4284fdbc9194935707fd3ca489c121de4a4cf73e1ad7ecd182b2ab33b534e89f3</citedby><cites>FETCH-LOGICAL-c392t-4284fdbc9194935707fd3ca489c121de4a4cf73e1ad7ecd182b2ab33b534e89f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7536217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7536217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27875141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sacha, Dominik</creatorcontrib><creatorcontrib>Leishi Zhang</creatorcontrib><creatorcontrib>Sedlmair, Michael</creatorcontrib><creatorcontrib>Lee, John A.</creatorcontrib><creatorcontrib>Peltonen, Jaakko</creatorcontrib><creatorcontrib>Weiskopf, Daniel</creatorcontrib><creatorcontrib>North, Stephen C.</creatorcontrib><creatorcontrib>Keim, Daniel A.</creatorcontrib><title>Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a "human in the loop" process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Dimensional changes</subject><subject>dimensionality reduction</subject><subject>Interactive control</subject><subject>Interactive systems</subject><subject>Interactive visualization</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Manuals</subject><subject>Multidimensional data</subject><subject>Reduction</subject><subject>Systems analysis</subject><subject>visual analytics</subject><subject>Visual flight</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LxDAQxYMofv8BIkjBi5eumSRtEm_LqquwIKwf15KmU4x0t5q0yP73prurB08zw_ze4_EIOQM6AqD6-uVtMh0xCvmIZVoJne2QQ9ACUprRfDfuVMqU5Sw_IEchfFAKQii9Tw6YVDIDAYdk_uZCb5rkcdmhN7Zz7TL5dt17cusWuAzxNI3rVskcq379vUnGyXPn49F7rJKZG3TDnowjugounJC92jQBT7fzmLze371MHtLZ0_RxMp6llmvWpYIpUVel1TGx5pmksq64NTGgBQYVCiNsLTmCqSTaChQrmSk5LzMuUOmaH5Orje-nb796DF2xcMFi05gltn0oQAkezbViEb38h360vY951xRjimkOkYINZX0bgse6-PRuYfyqAFoMhRdD4cVQeLEtPGouts59ucDqT_HbcATON4BDxL-3zHjOQPIfH62Eng</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Sacha, Dominik</creator><creator>Leishi Zhang</creator><creator>Sedlmair, Michael</creator><creator>Lee, John A.</creator><creator>Peltonen, Jaakko</creator><creator>Weiskopf, Daniel</creator><creator>North, Stephen C.</creator><creator>Keim, Daniel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis</title><author>Sacha, Dominik ; Leishi Zhang ; Sedlmair, Michael ; Lee, John A. ; Peltonen, Jaakko ; Weiskopf, Daniel ; North, Stephen C. ; Keim, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4284fdbc9194935707fd3ca489c121de4a4cf73e1ad7ecd182b2ab33b534e89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Dimensional changes</topic><topic>dimensionality reduction</topic><topic>Interactive control</topic><topic>Interactive systems</topic><topic>Interactive visualization</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Manuals</topic><topic>Multidimensional data</topic><topic>Reduction</topic><topic>Systems analysis</topic><topic>visual analytics</topic><topic>Visual flight</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sacha, Dominik</creatorcontrib><creatorcontrib>Leishi Zhang</creatorcontrib><creatorcontrib>Sedlmair, Michael</creatorcontrib><creatorcontrib>Lee, John A.</creatorcontrib><creatorcontrib>Peltonen, Jaakko</creatorcontrib><creatorcontrib>Weiskopf, Daniel</creatorcontrib><creatorcontrib>North, Stephen C.</creatorcontrib><creatorcontrib>Keim, Daniel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sacha, Dominik</au><au>Leishi Zhang</au><au>Sedlmair, Michael</au><au>Lee, John A.</au><au>Peltonen, Jaakko</au><au>Weiskopf, Daniel</au><au>North, Stephen C.</au><au>Keim, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2017-01</date><risdate>2017</risdate><volume>23</volume><issue>1</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a "human in the loop" process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27875141</pmid><doi>10.1109/TVCG.2016.2598495</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2017-01, Vol.23 (1), p.241-250
issn 1077-2626
1941-0506
language eng
recordid cdi_ieee_primary_7536217
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Analytical models
Data analysis
Data models
Data visualization
Dimensional changes
dimensionality reduction
Interactive control
Interactive systems
Interactive visualization
Machine learning
Machine learning algorithms
Manuals
Multidimensional data
Reduction
Systems analysis
visual analytics
Visual flight
Visualization
title Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Interaction%20with%20Dimensionality%20Reduction:%20A%20Structured%20Literature%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Sacha,%20Dominik&rft.date=2017-01&rft.volume=23&rft.issue=1&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2016.2598495&rft_dat=%3Cproquest_RIE%3E1843919982%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842282931&rft_id=info:pmid/27875141&rft_ieee_id=7536217&rfr_iscdi=true