Compressed and Quantized Correlation Estimators
In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-01, Vol.65 (1), p.56-68 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | IEEE transactions on signal processing |
container_volume | 65 |
creator | Zebadua, Augusto Gabriel Amblard, Pierre-Olivier Moisan, Eric Michel, Olivier J. J. |
description | In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation. |
doi_str_mv | 10.1109/TSP.2016.2597128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7529077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7529077</ieee_id><sourcerecordid>1835844701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRsFbvgpeCJw9p9_04llCtUFCxgrdlk0wwpc3W3VTQv94NKT3NN8NvXh9CtwRPCcFmtn5_nVJM5JQKowjVZ2hEDCcZ5kqeJ40Fy4RWn5foKsYNxoRzI0dolvvdPkCMUE1cW03eDq7tmr-U5T4E2Lqu8e1kEbtm5zof4jW6qN02ws0xjtHH42KdL7PVy9NzPl9lJaOiyxRg6YzjRU0YqWjSouSFYRJqymvOClLj0mmtJDVMO6hwoSVIwRVwTU3NxuhhmPvltnYf0vbwa71r7HK-sn2tf0BJzn9IYu8Hdh_89wFiZzf-ENp0niWaCZ1A3FN4oMrgYwxQn8YSbHsLbbLQ9hbao4Wp5W5oaQDghCtBDVaK_QMZdGrW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835844701</pqid></control><display><type>article</type><title>Compressed and Quantized Correlation Estimators</title><source>IEEE Electronic Library (IEL)</source><creator>Zebadua, Augusto Gabriel ; Amblard, Pierre-Olivier ; Moisan, Eric ; Michel, Olivier J. J.</creator><creatorcontrib>Zebadua, Augusto Gabriel ; Amblard, Pierre-Olivier ; Moisan, Eric ; Michel, Olivier J. J.</creatorcontrib><description>In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2597128</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressed acquisition ; Computer Science ; Context ; Correlation ; correlation function estimation ; Engineering Sciences ; Estimation ; Mathematical models ; Monitoring ; one-bit quantization ; Optimization ; random projection ; sampling without replacement ; Sensors ; Signal and Image Processing ; Sparse matrices ; Statistics ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2017-01, Vol.65 (1), p.56-68</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</citedby><cites>FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</cites><orcidid>0000-0002-0890-0383 ; 0000-0002-7695-7728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7529077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7529077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01447644$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zebadua, Augusto Gabriel</creatorcontrib><creatorcontrib>Amblard, Pierre-Olivier</creatorcontrib><creatorcontrib>Moisan, Eric</creatorcontrib><creatorcontrib>Michel, Olivier J. J.</creatorcontrib><title>Compressed and Quantized Correlation Estimators</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.</description><subject>Algorithms</subject><subject>Compressed acquisition</subject><subject>Computer Science</subject><subject>Context</subject><subject>Correlation</subject><subject>correlation function estimation</subject><subject>Engineering Sciences</subject><subject>Estimation</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>one-bit quantization</subject><subject>Optimization</subject><subject>random projection</subject><subject>sampling without replacement</subject><subject>Sensors</subject><subject>Signal and Image Processing</subject><subject>Sparse matrices</subject><subject>Statistics</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQxhdRsFbvgpeCJw9p9_04llCtUFCxgrdlk0wwpc3W3VTQv94NKT3NN8NvXh9CtwRPCcFmtn5_nVJM5JQKowjVZ2hEDCcZ5kqeJ40Fy4RWn5foKsYNxoRzI0dolvvdPkCMUE1cW03eDq7tmr-U5T4E2Lqu8e1kEbtm5zof4jW6qN02ws0xjtHH42KdL7PVy9NzPl9lJaOiyxRg6YzjRU0YqWjSouSFYRJqymvOClLj0mmtJDVMO6hwoSVIwRVwTU3NxuhhmPvltnYf0vbwa71r7HK-sn2tf0BJzn9IYu8Hdh_89wFiZzf-ENp0niWaCZ1A3FN4oMrgYwxQn8YSbHsLbbLQ9hbao4Wp5W5oaQDghCtBDVaK_QMZdGrW</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zebadua, Augusto Gabriel</creator><creator>Amblard, Pierre-Olivier</creator><creator>Moisan, Eric</creator><creator>Michel, Olivier J. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0002-7695-7728</orcidid></search><sort><creationdate>20170101</creationdate><title>Compressed and Quantized Correlation Estimators</title><author>Zebadua, Augusto Gabriel ; Amblard, Pierre-Olivier ; Moisan, Eric ; Michel, Olivier J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Compressed acquisition</topic><topic>Computer Science</topic><topic>Context</topic><topic>Correlation</topic><topic>correlation function estimation</topic><topic>Engineering Sciences</topic><topic>Estimation</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>one-bit quantization</topic><topic>Optimization</topic><topic>random projection</topic><topic>sampling without replacement</topic><topic>Sensors</topic><topic>Signal and Image Processing</topic><topic>Sparse matrices</topic><topic>Statistics</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zebadua, Augusto Gabriel</creatorcontrib><creatorcontrib>Amblard, Pierre-Olivier</creatorcontrib><creatorcontrib>Moisan, Eric</creatorcontrib><creatorcontrib>Michel, Olivier J. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zebadua, Augusto Gabriel</au><au>Amblard, Pierre-Olivier</au><au>Moisan, Eric</au><au>Michel, Olivier J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed and Quantized Correlation Estimators</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>65</volume><issue>1</issue><spage>56</spage><epage>68</epage><pages>56-68</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2597128</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0002-7695-7728</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2017-01, Vol.65 (1), p.56-68 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_7529077 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Compressed acquisition Computer Science Context Correlation correlation function estimation Engineering Sciences Estimation Mathematical models Monitoring one-bit quantization Optimization random projection sampling without replacement Sensors Signal and Image Processing Sparse matrices Statistics Transforms |
title | Compressed and Quantized Correlation Estimators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20and%20Quantized%20Correlation%20Estimators&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zebadua,%20Augusto%20Gabriel&rft.date=2017-01-01&rft.volume=65&rft.issue=1&rft.spage=56&rft.epage=68&rft.pages=56-68&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2597128&rft_dat=%3Cproquest_RIE%3E1835844701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835844701&rft_id=info:pmid/&rft_ieee_id=7529077&rfr_iscdi=true |