Compressed and Quantized Correlation Estimators

In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-01, Vol.65 (1), p.56-68
Hauptverfasser: Zebadua, Augusto Gabriel, Amblard, Pierre-Olivier, Moisan, Eric, Michel, Olivier J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 56
container_title IEEE transactions on signal processing
container_volume 65
creator Zebadua, Augusto Gabriel
Amblard, Pierre-Olivier
Moisan, Eric
Michel, Olivier J. J.
description In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.
doi_str_mv 10.1109/TSP.2016.2597128
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7529077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7529077</ieee_id><sourcerecordid>1835844701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxhdRsFbvgpeCJw9p9_04llCtUFCxgrdlk0wwpc3W3VTQv94NKT3NN8NvXh9CtwRPCcFmtn5_nVJM5JQKowjVZ2hEDCcZ5kqeJ40Fy4RWn5foKsYNxoRzI0dolvvdPkCMUE1cW03eDq7tmr-U5T4E2Lqu8e1kEbtm5zof4jW6qN02ws0xjtHH42KdL7PVy9NzPl9lJaOiyxRg6YzjRU0YqWjSouSFYRJqymvOClLj0mmtJDVMO6hwoSVIwRVwTU3NxuhhmPvltnYf0vbwa71r7HK-sn2tf0BJzn9IYu8Hdh_89wFiZzf-ENp0niWaCZ1A3FN4oMrgYwxQn8YSbHsLbbLQ9hbao4Wp5W5oaQDghCtBDVaK_QMZdGrW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835844701</pqid></control><display><type>article</type><title>Compressed and Quantized Correlation Estimators</title><source>IEEE Electronic Library (IEL)</source><creator>Zebadua, Augusto Gabriel ; Amblard, Pierre-Olivier ; Moisan, Eric ; Michel, Olivier J. J.</creator><creatorcontrib>Zebadua, Augusto Gabriel ; Amblard, Pierre-Olivier ; Moisan, Eric ; Michel, Olivier J. J.</creatorcontrib><description>In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2597128</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressed acquisition ; Computer Science ; Context ; Correlation ; correlation function estimation ; Engineering Sciences ; Estimation ; Mathematical models ; Monitoring ; one-bit quantization ; Optimization ; random projection ; sampling without replacement ; Sensors ; Signal and Image Processing ; Sparse matrices ; Statistics ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2017-01, Vol.65 (1), p.56-68</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</citedby><cites>FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</cites><orcidid>0000-0002-0890-0383 ; 0000-0002-7695-7728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7529077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7529077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01447644$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zebadua, Augusto Gabriel</creatorcontrib><creatorcontrib>Amblard, Pierre-Olivier</creatorcontrib><creatorcontrib>Moisan, Eric</creatorcontrib><creatorcontrib>Michel, Olivier J. J.</creatorcontrib><title>Compressed and Quantized Correlation Estimators</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.</description><subject>Algorithms</subject><subject>Compressed acquisition</subject><subject>Computer Science</subject><subject>Context</subject><subject>Correlation</subject><subject>correlation function estimation</subject><subject>Engineering Sciences</subject><subject>Estimation</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>one-bit quantization</subject><subject>Optimization</subject><subject>random projection</subject><subject>sampling without replacement</subject><subject>Sensors</subject><subject>Signal and Image Processing</subject><subject>Sparse matrices</subject><subject>Statistics</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQxhdRsFbvgpeCJw9p9_04llCtUFCxgrdlk0wwpc3W3VTQv94NKT3NN8NvXh9CtwRPCcFmtn5_nVJM5JQKowjVZ2hEDCcZ5kqeJ40Fy4RWn5foKsYNxoRzI0dolvvdPkCMUE1cW03eDq7tmr-U5T4E2Lqu8e1kEbtm5zof4jW6qN02ws0xjtHH42KdL7PVy9NzPl9lJaOiyxRg6YzjRU0YqWjSouSFYRJqymvOClLj0mmtJDVMO6hwoSVIwRVwTU3NxuhhmPvltnYf0vbwa71r7HK-sn2tf0BJzn9IYu8Hdh_89wFiZzf-ENp0niWaCZ1A3FN4oMrgYwxQn8YSbHsLbbLQ9hbao4Wp5W5oaQDghCtBDVaK_QMZdGrW</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zebadua, Augusto Gabriel</creator><creator>Amblard, Pierre-Olivier</creator><creator>Moisan, Eric</creator><creator>Michel, Olivier J. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0002-7695-7728</orcidid></search><sort><creationdate>20170101</creationdate><title>Compressed and Quantized Correlation Estimators</title><author>Zebadua, Augusto Gabriel ; Amblard, Pierre-Olivier ; Moisan, Eric ; Michel, Olivier J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7e06a9a4bf131d26a95c4b936ef24f43b1f0ca88762938aed0b86e6547e4829f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Compressed acquisition</topic><topic>Computer Science</topic><topic>Context</topic><topic>Correlation</topic><topic>correlation function estimation</topic><topic>Engineering Sciences</topic><topic>Estimation</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>one-bit quantization</topic><topic>Optimization</topic><topic>random projection</topic><topic>sampling without replacement</topic><topic>Sensors</topic><topic>Signal and Image Processing</topic><topic>Sparse matrices</topic><topic>Statistics</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zebadua, Augusto Gabriel</creatorcontrib><creatorcontrib>Amblard, Pierre-Olivier</creatorcontrib><creatorcontrib>Moisan, Eric</creatorcontrib><creatorcontrib>Michel, Olivier J. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zebadua, Augusto Gabriel</au><au>Amblard, Pierre-Olivier</au><au>Moisan, Eric</au><au>Michel, Olivier J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed and Quantized Correlation Estimators</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>65</volume><issue>1</issue><spage>56</spage><epage>68</epage><pages>56-68</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In passive monitoring using sensor networks, low energy supplies drastically constrain sensors in terms of calculation and communication abilities. Designing processing algorithms at the sensor level that take into account these constraints is an important problem in this context. Here we study the estimation of correlation functions between sensors using compressed acquisition and one-bit-quantization. The estimation is achieved directly using compressed samples, without considering any reconstruction of the signals. We show that if the signals of interest are far from white noise, estimation of the correlation using M compressed samples out of N ≥ M can be more advantageous than estimation of the correlation using M consecutive samples. The analysis consists of studying the asymptotic performance of the estimators at a fixed compression rate. We provide the analysis when the compression is realized by a random projection matrix composed of independent and identically distributed entries. The framework includes widely used random projection matrices, such as Gaussian and Bernoulli matrices, and it also includes very sparse matrices. However, it does not include subsampling without replacement, for which a separate analysis is provided. When considering one-bit-quantization as well, the theoretical analysis is not tractable. However, empirical evidence allows the conclusion that in practical situations, compressed and quantized estimators behave sufficiently correctly to be useful in, for example, time-delay estimation and model estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2597128</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0890-0383</orcidid><orcidid>https://orcid.org/0000-0002-7695-7728</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-01, Vol.65 (1), p.56-68
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_7529077
source IEEE Electronic Library (IEL)
subjects Algorithms
Compressed acquisition
Computer Science
Context
Correlation
correlation function estimation
Engineering Sciences
Estimation
Mathematical models
Monitoring
one-bit quantization
Optimization
random projection
sampling without replacement
Sensors
Signal and Image Processing
Sparse matrices
Statistics
Transforms
title Compressed and Quantized Correlation Estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20and%20Quantized%20Correlation%20Estimators&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zebadua,%20Augusto%20Gabriel&rft.date=2017-01-01&rft.volume=65&rft.issue=1&rft.spage=56&rft.epage=68&rft.pages=56-68&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2597128&rft_dat=%3Cproquest_RIE%3E1835844701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835844701&rft_id=info:pmid/&rft_ieee_id=7529077&rfr_iscdi=true