On repeated-root cyclic codes
A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1991-03, Vol.37 (2), p.337-342 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 2 |
container_start_page | 337 |
container_title | IEEE transactions on information theory |
container_volume | 37 |
creator | Castagnoli, G. Massey, J.L. Schoeller, P.A. von Seemann, N. |
description | A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-root cyclic codes of lengths up to n=62 are shown to contain the largest known number of codewords for their given length and minimum distance. The relative minimum distance d/sub min//n of q-ary repeated-root cyclic codes of rate r>or=R is proven to tend to zero as the largest multiplicity of a root of the generator g(x) increases to infinity. It is further shown that repeated-root cycle codes cannot be asymptotically better than simple-root cyclic codes.< > |
doi_str_mv | 10.1109/18.75249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_75249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>75249</ieee_id><sourcerecordid>28466700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-a788643bdae0b58556f5a817b67ea14a89e6f8f749a4726c6928df24821a49bf3</originalsourceid><addsrcrecordid>eNo9z0tLxDAUBeAgCtZRcOtC6ErcZEzSPG6WMviCgdnoOqTpDVQ6k5p0FvPvHa24OlzOx4VDyDVnS86ZfeCwNEpIe0IqrpShVit5SirGOFArJZyTi1I-j6dUXFTkdrOrM47oJ-xoTmmqwyEMfahD6rBckrPoh4JXf7kgH89P76tXut68vK0e1zQ0DCbqDYCWTdt5ZK0CpXRUHrhptUHPpQeLOkI00npphA7aCuiikCC4l7aNzYLczX_HnL72WCa37UvAYfA7TPviBEitDWNHeD_DkFMpGaMbc7_1-eA4cz_7HQf3u_9Ib2baI-I_m7tvsyRSuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28466700</pqid></control><display><type>article</type><title>On repeated-root cyclic codes</title><source>IEEE Electronic Library (IEL)</source><creator>Castagnoli, G. ; Massey, J.L. ; Schoeller, P.A. ; von Seemann, N.</creator><creatorcontrib>Castagnoli, G. ; Massey, J.L. ; Schoeller, P.A. ; von Seemann, N.</creatorcontrib><description>A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-root cyclic codes of lengths up to n=62 are shown to contain the largest known number of codewords for their given length and minimum distance. The relative minimum distance d/sub min//n of q-ary repeated-root cyclic codes of rate r>or=R is proven to tend to zero as the largest multiplicity of a root of the generator g(x) increases to infinity. It is further shown that repeated-root cycle codes cannot be asymptotically better than simple-root cyclic codes.< ></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.75249</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Block codes ; Error correction codes ; Galois fields ; H infinity control ; Helium ; Information processing ; Information theory ; Parity check codes ; Signal processing ; Vectors</subject><ispartof>IEEE transactions on information theory, 1991-03, Vol.37 (2), p.337-342</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-a788643bdae0b58556f5a817b67ea14a89e6f8f749a4726c6928df24821a49bf3</citedby><cites>FETCH-LOGICAL-c308t-a788643bdae0b58556f5a817b67ea14a89e6f8f749a4726c6928df24821a49bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/75249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/75249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Castagnoli, G.</creatorcontrib><creatorcontrib>Massey, J.L.</creatorcontrib><creatorcontrib>Schoeller, P.A.</creatorcontrib><creatorcontrib>von Seemann, N.</creatorcontrib><title>On repeated-root cyclic codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-root cyclic codes of lengths up to n=62 are shown to contain the largest known number of codewords for their given length and minimum distance. The relative minimum distance d/sub min//n of q-ary repeated-root cyclic codes of rate r>or=R is proven to tend to zero as the largest multiplicity of a root of the generator g(x) increases to infinity. It is further shown that repeated-root cycle codes cannot be asymptotically better than simple-root cyclic codes.< ></description><subject>Block codes</subject><subject>Error correction codes</subject><subject>Galois fields</subject><subject>H infinity control</subject><subject>Helium</subject><subject>Information processing</subject><subject>Information theory</subject><subject>Parity check codes</subject><subject>Signal processing</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9z0tLxDAUBeAgCtZRcOtC6ErcZEzSPG6WMviCgdnoOqTpDVQ6k5p0FvPvHa24OlzOx4VDyDVnS86ZfeCwNEpIe0IqrpShVit5SirGOFArJZyTi1I-j6dUXFTkdrOrM47oJ-xoTmmqwyEMfahD6rBckrPoh4JXf7kgH89P76tXut68vK0e1zQ0DCbqDYCWTdt5ZK0CpXRUHrhptUHPpQeLOkI00npphA7aCuiikCC4l7aNzYLczX_HnL72WCa37UvAYfA7TPviBEitDWNHeD_DkFMpGaMbc7_1-eA4cz_7HQf3u_9Ib2baI-I_m7tvsyRSuQ</recordid><startdate>19910301</startdate><enddate>19910301</enddate><creator>Castagnoli, G.</creator><creator>Massey, J.L.</creator><creator>Schoeller, P.A.</creator><creator>von Seemann, N.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910301</creationdate><title>On repeated-root cyclic codes</title><author>Castagnoli, G. ; Massey, J.L. ; Schoeller, P.A. ; von Seemann, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-a788643bdae0b58556f5a817b67ea14a89e6f8f749a4726c6928df24821a49bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Block codes</topic><topic>Error correction codes</topic><topic>Galois fields</topic><topic>H infinity control</topic><topic>Helium</topic><topic>Information processing</topic><topic>Information theory</topic><topic>Parity check codes</topic><topic>Signal processing</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castagnoli, G.</creatorcontrib><creatorcontrib>Massey, J.L.</creatorcontrib><creatorcontrib>Schoeller, P.A.</creatorcontrib><creatorcontrib>von Seemann, N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Castagnoli, G.</au><au>Massey, J.L.</au><au>Schoeller, P.A.</au><au>von Seemann, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On repeated-root cyclic codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1991-03-01</date><risdate>1991</risdate><volume>37</volume><issue>2</issue><spage>337</spage><epage>342</epage><pages>337-342</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-root cyclic codes of lengths up to n=62 are shown to contain the largest known number of codewords for their given length and minimum distance. The relative minimum distance d/sub min//n of q-ary repeated-root cyclic codes of rate r>or=R is proven to tend to zero as the largest multiplicity of a root of the generator g(x) increases to infinity. It is further shown that repeated-root cycle codes cannot be asymptotically better than simple-root cyclic codes.< ></abstract><pub>IEEE</pub><doi>10.1109/18.75249</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1991-03, Vol.37 (2), p.337-342 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_75249 |
source | IEEE Electronic Library (IEL) |
subjects | Block codes Error correction codes Galois fields H infinity control Helium Information processing Information theory Parity check codes Signal processing Vectors |
title | On repeated-root cyclic codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20repeated-root%20cyclic%20codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Castagnoli,%20G.&rft.date=1991-03-01&rft.volume=37&rft.issue=2&rft.spage=337&rft.epage=342&rft.pages=337-342&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.75249&rft_dat=%3Cproquest_RIE%3E28466700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28466700&rft_id=info:pmid/&rft_ieee_id=75249&rfr_iscdi=true |