Subspace approximation for adaptive multichannel radar filtering

In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bojanczyk, A.W., Melvin, W.L., Holder, E.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1546 vol.2
container_issue
container_start_page 1542
container_title
container_volume 2
creator Bojanczyk, A.W.
Melvin, W.L.
Holder, E.J.
description In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic to the adaptive processor. Hence, approximate numerical methods for adaptive weight computation may successfully be used in place of exact methods. We propose a numerical procedure based on partial bi-diagonalization of the interference covariance matrix, coupled with a preconditioned conjugate gradient iterative method, to approximate the dominant subspace and construct the adaptive weights. Through example, we show the potential of this method for adaptive radar.
doi_str_mv 10.1109/ACSSC.1998.751585
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_751585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>751585</ieee_id><sourcerecordid>751585</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-ca2c5e062f9f2a88a44c80ea526f990f0732f9a141e7fb22065a564bd81382403</originalsourceid><addsrcrecordid>eNotj9tKw0AYhBcPYK19AL3aF0j897x7ZwlWhYIX0evyJ93VlTQJm1T07V2oczMwHwwzhNwyKBkDd7-u6roqmXO2NIopq87IgiujCy5AnJNrMBaEYtKaC7JgoGyhhRNXZDVNX5AlVYZsQR7qYzON2HqK45iGn3jAOQ49DUOiuMdxjt-eHo7dHNtP7Hvf0ZTjREPsZp9i_3FDLgN2k1_9-5K8bx7fqudi-_r0Uq23RWSGz0WLvFUeNA8ucLQWpWwteFRcB-cggBEZYd7kTWg4B61QadnsLROWSxBLcnfqjd773Zjy0PS7O30XfzX2S30</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Subspace approximation for adaptive multichannel radar filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bojanczyk, A.W. ; Melvin, W.L. ; Holder, E.J.</creator><creatorcontrib>Bojanczyk, A.W. ; Melvin, W.L. ; Holder, E.J.</creatorcontrib><description>In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic to the adaptive processor. Hence, approximate numerical methods for adaptive weight computation may successfully be used in place of exact methods. We propose a numerical procedure based on partial bi-diagonalization of the interference covariance matrix, coupled with a preconditioned conjugate gradient iterative method, to approximate the dominant subspace and construct the adaptive weights. Through example, we show the potential of this method for adaptive radar.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 0780351487</identifier><identifier>ISBN: 9780780351486</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1998.751585</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Additive noise ; Airborne radar ; Covariance matrix ; Filtering ; Interference ; Parameter estimation ; Radar cross section ; Radar detection ; Radar measurements</subject><ispartof>Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284), 1998, Vol.2, p.1542-1546 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/751585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/751585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bojanczyk, A.W.</creatorcontrib><creatorcontrib>Melvin, W.L.</creatorcontrib><creatorcontrib>Holder, E.J.</creatorcontrib><title>Subspace approximation for adaptive multichannel radar filtering</title><title>Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)</title><addtitle>ACSSC</addtitle><description>In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic to the adaptive processor. Hence, approximate numerical methods for adaptive weight computation may successfully be used in place of exact methods. We propose a numerical procedure based on partial bi-diagonalization of the interference covariance matrix, coupled with a preconditioned conjugate gradient iterative method, to approximate the dominant subspace and construct the adaptive weights. Through example, we show the potential of this method for adaptive radar.</description><subject>Adaptive filters</subject><subject>Additive noise</subject><subject>Airborne radar</subject><subject>Covariance matrix</subject><subject>Filtering</subject><subject>Interference</subject><subject>Parameter estimation</subject><subject>Radar cross section</subject><subject>Radar detection</subject><subject>Radar measurements</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>0780351487</isbn><isbn>9780780351486</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj9tKw0AYhBcPYK19AL3aF0j897x7ZwlWhYIX0evyJ93VlTQJm1T07V2oczMwHwwzhNwyKBkDd7-u6roqmXO2NIopq87IgiujCy5AnJNrMBaEYtKaC7JgoGyhhRNXZDVNX5AlVYZsQR7qYzON2HqK45iGn3jAOQ49DUOiuMdxjt-eHo7dHNtP7Hvf0ZTjREPsZp9i_3FDLgN2k1_9-5K8bx7fqudi-_r0Uq23RWSGz0WLvFUeNA8ucLQWpWwteFRcB-cggBEZYd7kTWg4B61QadnsLROWSxBLcnfqjd773Zjy0PS7O30XfzX2S30</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Bojanczyk, A.W.</creator><creator>Melvin, W.L.</creator><creator>Holder, E.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Subspace approximation for adaptive multichannel radar filtering</title><author>Bojanczyk, A.W. ; Melvin, W.L. ; Holder, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-ca2c5e062f9f2a88a44c80ea526f990f0732f9a141e7fb22065a564bd81382403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adaptive filters</topic><topic>Additive noise</topic><topic>Airborne radar</topic><topic>Covariance matrix</topic><topic>Filtering</topic><topic>Interference</topic><topic>Parameter estimation</topic><topic>Radar cross section</topic><topic>Radar detection</topic><topic>Radar measurements</topic><toplevel>online_resources</toplevel><creatorcontrib>Bojanczyk, A.W.</creatorcontrib><creatorcontrib>Melvin, W.L.</creatorcontrib><creatorcontrib>Holder, E.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bojanczyk, A.W.</au><au>Melvin, W.L.</au><au>Holder, E.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Subspace approximation for adaptive multichannel radar filtering</atitle><btitle>Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)</btitle><stitle>ACSSC</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>1542</spage><epage>1546 vol.2</epage><pages>1542-1546 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>0780351487</isbn><isbn>9780780351486</isbn><abstract>In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic to the adaptive processor. Hence, approximate numerical methods for adaptive weight computation may successfully be used in place of exact methods. We propose a numerical procedure based on partial bi-diagonalization of the interference covariance matrix, coupled with a preconditioned conjugate gradient iterative method, to approximate the dominant subspace and construct the adaptive weights. Through example, we show the potential of this method for adaptive radar.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1998.751585</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284), 1998, Vol.2, p.1542-1546 vol.2
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_751585
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
Additive noise
Airborne radar
Covariance matrix
Filtering
Interference
Parameter estimation
Radar cross section
Radar detection
Radar measurements
title Subspace approximation for adaptive multichannel radar filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Subspace%20approximation%20for%20adaptive%20multichannel%20radar%20filtering&rft.btitle=Conference%20Record%20of%20Thirty-Second%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(Cat.%20No.98CH36284)&rft.au=Bojanczyk,%20A.W.&rft.date=1998&rft.volume=2&rft.spage=1542&rft.epage=1546%20vol.2&rft.pages=1542-1546%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=0780351487&rft.isbn_list=9780780351486&rft_id=info:doi/10.1109/ACSSC.1998.751585&rft_dat=%3Cieee_6IE%3E751585%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=751585&rfr_iscdi=true