Adaptive Multimodal Continuous Ant Colony Optimization
Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal op...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2017-04, Vol.21 (2), p.191-205 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 21 |
creator | Yang, Qiang Chen, Wei-Neng Yu, Zhengtao Gu, Tianlong Li, Yun Zhang, Huaxiang Zhang, Jun |
description | Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima. |
doi_str_mv | 10.1109/TEVC.2016.2591064 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7511696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7511696</ieee_id><sourcerecordid>10_1109_TEVC_2016_2591064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</originalsourceid><addsrcrecordid>eNo9j81Kw0AUhQdRsFYfQNzkBRLvzfxkZhlCtUKlmyruhplkAiNJpuRHqE9vQourey6cczgfIY8ICSKo58Pms0hSQJGkXCEIdkVWqBjGAKm4njVIFWeZ_Lold8PwDYCMo1oRkVfmOPofF71PzejbUJkmKkI3-m4K0xDl3Ti_TehO0X72tf7XjD509-SmNs3gHi53TT5eNodiG-_2r29FvotLCnKM09RmFh1QLigDZ63knLN5oABFTSUrVlVMcGmldSVlMmUKmRW2FjXWwgJdEzz3ln0Yht7V-tj71vQnjaAXcL2A6wVcX8DnzNM5451z__6MIwol6B97J1QX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Multimodal Continuous Ant Colony Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Qiang ; Chen, Wei-Neng ; Yu, Zhengtao ; Gu, Tianlong ; Li, Yun ; Zhang, Huaxiang ; Zhang, Jun</creator><creatorcontrib>Yang, Qiang ; Chen, Wei-Neng ; Yu, Zhengtao ; Gu, Tianlong ; Li, Yun ; Zhang, Huaxiang ; Zhang, Jun</creatorcontrib><description>Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2016.2591064</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Ant colony optimization (ACO) ; Clustering algorithms ; Computer science ; multimodal optimization ; multiple global optima ; niching ; Optimization ; Sociology ; Statistics</subject><ispartof>IEEE transactions on evolutionary computation, 2017-04, Vol.21 (2), p.191-205</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</citedby><cites>FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</cites><orcidid>0000-0002-6575-1839 ; 0000-0003-0843-5802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7511696$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Chen, Wei-Neng</creatorcontrib><creatorcontrib>Yu, Zhengtao</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Adaptive Multimodal Continuous Ant Colony Optimization</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Ant colony optimization (ACO)</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>multimodal optimization</subject><subject>multiple global optima</subject><subject>niching</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81Kw0AUhQdRsFYfQNzkBRLvzfxkZhlCtUKlmyruhplkAiNJpuRHqE9vQourey6cczgfIY8ICSKo58Pms0hSQJGkXCEIdkVWqBjGAKm4njVIFWeZ_Lold8PwDYCMo1oRkVfmOPofF71PzejbUJkmKkI3-m4K0xDl3Ti_TehO0X72tf7XjD509-SmNs3gHi53TT5eNodiG-_2r29FvotLCnKM09RmFh1QLigDZ63knLN5oABFTSUrVlVMcGmldSVlMmUKmRW2FjXWwgJdEzz3ln0Yht7V-tj71vQnjaAXcL2A6wVcX8DnzNM5451z__6MIwol6B97J1QX</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Yang, Qiang</creator><creator>Chen, Wei-Neng</creator><creator>Yu, Zhengtao</creator><creator>Gu, Tianlong</creator><creator>Li, Yun</creator><creator>Zhang, Huaxiang</creator><creator>Zhang, Jun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6575-1839</orcidid><orcidid>https://orcid.org/0000-0003-0843-5802</orcidid></search><sort><creationdate>201704</creationdate><title>Adaptive Multimodal Continuous Ant Colony Optimization</title><author>Yang, Qiang ; Chen, Wei-Neng ; Yu, Zhengtao ; Gu, Tianlong ; Li, Yun ; Zhang, Huaxiang ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Ant colony optimization (ACO)</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>multimodal optimization</topic><topic>multiple global optima</topic><topic>niching</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Chen, Wei-Neng</creatorcontrib><creatorcontrib>Yu, Zhengtao</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qiang</au><au>Chen, Wei-Neng</au><au>Yu, Zhengtao</au><au>Gu, Tianlong</au><au>Li, Yun</au><au>Zhang, Huaxiang</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Multimodal Continuous Ant Colony Optimization</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2017-04</date><risdate>2017</risdate><volume>21</volume><issue>2</issue><spage>191</spage><epage>205</epage><pages>191-205</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.</abstract><pub>IEEE</pub><doi>10.1109/TEVC.2016.2591064</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6575-1839</orcidid><orcidid>https://orcid.org/0000-0003-0843-5802</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2017-04, Vol.21 (2), p.191-205 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_7511696 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Ant colony optimization Ant colony optimization (ACO) Clustering algorithms Computer science multimodal optimization multiple global optima niching Optimization Sociology Statistics |
title | Adaptive Multimodal Continuous Ant Colony Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Multimodal%20Continuous%20Ant%20Colony%20Optimization&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Yang,%20Qiang&rft.date=2017-04&rft.volume=21&rft.issue=2&rft.spage=191&rft.epage=205&rft.pages=191-205&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2016.2591064&rft_dat=%3Ccrossref_ieee_%3E10_1109_TEVC_2016_2591064%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7511696&rfr_iscdi=true |