Adaptive Multimodal Continuous Ant Colony Optimization

Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2017-04, Vol.21 (2), p.191-205
Hauptverfasser: Yang, Qiang, Chen, Wei-Neng, Yu, Zhengtao, Gu, Tianlong, Li, Yun, Zhang, Huaxiang, Zhang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 2
container_start_page 191
container_title IEEE transactions on evolutionary computation
container_volume 21
creator Yang, Qiang
Chen, Wei-Neng
Yu, Zhengtao
Gu, Tianlong
Li, Yun
Zhang, Huaxiang
Zhang, Jun
description Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.
doi_str_mv 10.1109/TEVC.2016.2591064
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7511696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7511696</ieee_id><sourcerecordid>10_1109_TEVC_2016_2591064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</originalsourceid><addsrcrecordid>eNo9j81Kw0AUhQdRsFYfQNzkBRLvzfxkZhlCtUKlmyruhplkAiNJpuRHqE9vQourey6cczgfIY8ICSKo58Pms0hSQJGkXCEIdkVWqBjGAKm4njVIFWeZ_Lold8PwDYCMo1oRkVfmOPofF71PzejbUJkmKkI3-m4K0xDl3Ti_TehO0X72tf7XjD509-SmNs3gHi53TT5eNodiG-_2r29FvotLCnKM09RmFh1QLigDZ63knLN5oABFTSUrVlVMcGmldSVlMmUKmRW2FjXWwgJdEzz3ln0Yht7V-tj71vQnjaAXcL2A6wVcX8DnzNM5451z__6MIwol6B97J1QX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Multimodal Continuous Ant Colony Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Qiang ; Chen, Wei-Neng ; Yu, Zhengtao ; Gu, Tianlong ; Li, Yun ; Zhang, Huaxiang ; Zhang, Jun</creator><creatorcontrib>Yang, Qiang ; Chen, Wei-Neng ; Yu, Zhengtao ; Gu, Tianlong ; Li, Yun ; Zhang, Huaxiang ; Zhang, Jun</creatorcontrib><description>Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2016.2591064</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Ant colony optimization (ACO) ; Clustering algorithms ; Computer science ; multimodal optimization ; multiple global optima ; niching ; Optimization ; Sociology ; Statistics</subject><ispartof>IEEE transactions on evolutionary computation, 2017-04, Vol.21 (2), p.191-205</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</citedby><cites>FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</cites><orcidid>0000-0002-6575-1839 ; 0000-0003-0843-5802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7511696$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Chen, Wei-Neng</creatorcontrib><creatorcontrib>Yu, Zhengtao</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Adaptive Multimodal Continuous Ant Colony Optimization</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Ant colony optimization (ACO)</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>multimodal optimization</subject><subject>multiple global optima</subject><subject>niching</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81Kw0AUhQdRsFYfQNzkBRLvzfxkZhlCtUKlmyruhplkAiNJpuRHqE9vQourey6cczgfIY8ICSKo58Pms0hSQJGkXCEIdkVWqBjGAKm4njVIFWeZ_Lold8PwDYCMo1oRkVfmOPofF71PzejbUJkmKkI3-m4K0xDl3Ti_TehO0X72tf7XjD509-SmNs3gHi53TT5eNodiG-_2r29FvotLCnKM09RmFh1QLigDZ63knLN5oABFTSUrVlVMcGmldSVlMmUKmRW2FjXWwgJdEzz3ln0Yht7V-tj71vQnjaAXcL2A6wVcX8DnzNM5451z__6MIwol6B97J1QX</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Yang, Qiang</creator><creator>Chen, Wei-Neng</creator><creator>Yu, Zhengtao</creator><creator>Gu, Tianlong</creator><creator>Li, Yun</creator><creator>Zhang, Huaxiang</creator><creator>Zhang, Jun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6575-1839</orcidid><orcidid>https://orcid.org/0000-0003-0843-5802</orcidid></search><sort><creationdate>201704</creationdate><title>Adaptive Multimodal Continuous Ant Colony Optimization</title><author>Yang, Qiang ; Chen, Wei-Neng ; Yu, Zhengtao ; Gu, Tianlong ; Li, Yun ; Zhang, Huaxiang ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-22b7b1e0356340ebb855545916093ad8d4dd4658b8bec34824914b6bf6f1f6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Ant colony optimization (ACO)</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>multimodal optimization</topic><topic>multiple global optima</topic><topic>niching</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Chen, Wei-Neng</creatorcontrib><creatorcontrib>Yu, Zhengtao</creatorcontrib><creatorcontrib>Gu, Tianlong</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Zhang, Huaxiang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qiang</au><au>Chen, Wei-Neng</au><au>Yu, Zhengtao</au><au>Gu, Tianlong</au><au>Li, Yun</au><au>Zhang, Huaxiang</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Multimodal Continuous Ant Colony Optimization</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2017-04</date><risdate>2017</risdate><volume>21</volume><issue>2</issue><spage>191</spage><epage>205</epage><pages>191-205</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.</abstract><pub>IEEE</pub><doi>10.1109/TEVC.2016.2591064</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6575-1839</orcidid><orcidid>https://orcid.org/0000-0003-0843-5802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2017-04, Vol.21 (2), p.191-205
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_7511696
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Ant colony optimization
Ant colony optimization (ACO)
Clustering algorithms
Computer science
multimodal optimization
multiple global optima
niching
Optimization
Sociology
Statistics
title Adaptive Multimodal Continuous Ant Colony Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Multimodal%20Continuous%20Ant%20Colony%20Optimization&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Yang,%20Qiang&rft.date=2017-04&rft.volume=21&rft.issue=2&rft.spage=191&rft.epage=205&rft.pages=191-205&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2016.2591064&rft_dat=%3Ccrossref_ieee_%3E10_1109_TEVC_2016_2591064%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7511696&rfr_iscdi=true