Physics-Based Hydraulic Turbine Model for System Dynamic Studies

A one-dimensional numerical model of a Francis turbine hydropower plant for dynamic response studies is presented with an alternate representation of the turbine unit component. The conventional, simplified representation of the hydraulic turbine is replaced by a consideration of the conservation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2017-03, Vol.32 (2), p.1161-1168
Hauptverfasser: Giosio, Dean R., Henderson, Alan D., Walker, Jessica M., Brandner, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 2
container_start_page 1161
container_title IEEE transactions on power systems
container_volume 32
creator Giosio, Dean R.
Henderson, Alan D.
Walker, Jessica M.
Brandner, Paul A.
description A one-dimensional numerical model of a Francis turbine hydropower plant for dynamic response studies is presented with an alternate representation of the turbine unit component. The conventional, simplified representation of the hydraulic turbine is replaced by a consideration of the conservation of angular momentum using inlet and outlet velocity vectors calculated based on effective turbine geometry. Specific energy loss components associated with off-design conditions such as runner blade inlet incidence loss and draft tube residual swirl flow loss are determined. Estimates for mechanical frictional losses and churning losses are calculated to ensure accurate simulation across the entire turbine operating range. The resulting model therefore takes into consideration real sources of major loss, eliminating the use of ambiguous correction factors, while remaining equally simple to implement into current power system models. The new turbine formulation is validated against transient test data from a 119 MW Francis turbine unit, while simulations based on two existing conventional models are included for comparison.
doi_str_mv 10.1109/TPWRS.2016.2574330
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_7480816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7480816</ieee_id><sourcerecordid>7480816</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6443fa0b17830f8f05d7b0111e71a779aa8e14b530f3c48b219e1508fa9469c73</originalsourceid><addsrcrecordid>eNotjM1Kw0AYABdRMFZfQC_7Alu_L_t_U2u1QsViIh7LJtnFlaSVbHLI2xvQ0xxmGEKuEZaIYG_L3ed7scwB1TKXWnAOJyRDKQ0Dpe0pycAYyYyVcE4uUvoGADWLjNztvqYU68QeXPIN3UxN78Y21rQc-yoePH09Nr6l4djTYkqD7-jjdHDdHBTD2ESfLslZcG3yV_9ckI-ndbnasO3b88vqfssiajkwJQQPDirUhkMwAWSjK0BEr9FpbZ0zHkUlZ8lrYaocrUcJJjgrlK01X5Cbv2_03u9_-ti5ftprYcCg4r8U4kgL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics-Based Hydraulic Turbine Model for System Dynamic Studies</title><source>IEEE</source><creator>Giosio, Dean R. ; Henderson, Alan D. ; Walker, Jessica M. ; Brandner, Paul A.</creator><creatorcontrib>Giosio, Dean R. ; Henderson, Alan D. ; Walker, Jessica M. ; Brandner, Paul A.</creatorcontrib><description>A one-dimensional numerical model of a Francis turbine hydropower plant for dynamic response studies is presented with an alternate representation of the turbine unit component. The conventional, simplified representation of the hydraulic turbine is replaced by a consideration of the conservation of angular momentum using inlet and outlet velocity vectors calculated based on effective turbine geometry. Specific energy loss components associated with off-design conditions such as runner blade inlet incidence loss and draft tube residual swirl flow loss are determined. Estimates for mechanical frictional losses and churning losses are calculated to ensure accurate simulation across the entire turbine operating range. The resulting model therefore takes into consideration real sources of major loss, eliminating the use of ambiguous correction factors, while remaining equally simple to implement into current power system models. The new turbine formulation is validated against transient test data from a 119 MW Francis turbine unit, while simulations based on two existing conventional models are included for comparison.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2016.2574330</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; hydraulic turbine dynamic simulation model ; Hydraulic turbines ; Hydroelectric power generation ; Load modeling ; Mathematical model ; power system dynamics ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2017-03, Vol.32 (2), p.1161-1168</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7480816$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7480816$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Giosio, Dean R.</creatorcontrib><creatorcontrib>Henderson, Alan D.</creatorcontrib><creatorcontrib>Walker, Jessica M.</creatorcontrib><creatorcontrib>Brandner, Paul A.</creatorcontrib><title>Physics-Based Hydraulic Turbine Model for System Dynamic Studies</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>A one-dimensional numerical model of a Francis turbine hydropower plant for dynamic response studies is presented with an alternate representation of the turbine unit component. The conventional, simplified representation of the hydraulic turbine is replaced by a consideration of the conservation of angular momentum using inlet and outlet velocity vectors calculated based on effective turbine geometry. Specific energy loss components associated with off-design conditions such as runner blade inlet incidence loss and draft tube residual swirl flow loss are determined. Estimates for mechanical frictional losses and churning losses are calculated to ensure accurate simulation across the entire turbine operating range. The resulting model therefore takes into consideration real sources of major loss, eliminating the use of ambiguous correction factors, while remaining equally simple to implement into current power system models. The new turbine formulation is validated against transient test data from a 119 MW Francis turbine unit, while simulations based on two existing conventional models are included for comparison.</description><subject>Data models</subject><subject>hydraulic turbine dynamic simulation model</subject><subject>Hydraulic turbines</subject><subject>Hydroelectric power generation</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>power system dynamics</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjM1Kw0AYABdRMFZfQC_7Alu_L_t_U2u1QsViIh7LJtnFlaSVbHLI2xvQ0xxmGEKuEZaIYG_L3ed7scwB1TKXWnAOJyRDKQ0Dpe0pycAYyYyVcE4uUvoGADWLjNztvqYU68QeXPIN3UxN78Y21rQc-yoePH09Nr6l4djTYkqD7-jjdHDdHBTD2ESfLslZcG3yV_9ckI-ndbnasO3b88vqfssiajkwJQQPDirUhkMwAWSjK0BEr9FpbZ0zHkUlZ8lrYaocrUcJJjgrlK01X5Cbv2_03u9_-ti5ftprYcCg4r8U4kgL</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Giosio, Dean R.</creator><creator>Henderson, Alan D.</creator><creator>Walker, Jessica M.</creator><creator>Brandner, Paul A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>201703</creationdate><title>Physics-Based Hydraulic Turbine Model for System Dynamic Studies</title><author>Giosio, Dean R. ; Henderson, Alan D. ; Walker, Jessica M. ; Brandner, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6443fa0b17830f8f05d7b0111e71a779aa8e14b530f3c48b219e1508fa9469c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Data models</topic><topic>hydraulic turbine dynamic simulation model</topic><topic>Hydraulic turbines</topic><topic>Hydroelectric power generation</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>power system dynamics</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giosio, Dean R.</creatorcontrib><creatorcontrib>Henderson, Alan D.</creatorcontrib><creatorcontrib>Walker, Jessica M.</creatorcontrib><creatorcontrib>Brandner, Paul A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giosio, Dean R.</au><au>Henderson, Alan D.</au><au>Walker, Jessica M.</au><au>Brandner, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Based Hydraulic Turbine Model for System Dynamic Studies</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2017-03</date><risdate>2017</risdate><volume>32</volume><issue>2</issue><spage>1161</spage><epage>1168</epage><pages>1161-1168</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>A one-dimensional numerical model of a Francis turbine hydropower plant for dynamic response studies is presented with an alternate representation of the turbine unit component. The conventional, simplified representation of the hydraulic turbine is replaced by a consideration of the conservation of angular momentum using inlet and outlet velocity vectors calculated based on effective turbine geometry. Specific energy loss components associated with off-design conditions such as runner blade inlet incidence loss and draft tube residual swirl flow loss are determined. Estimates for mechanical frictional losses and churning losses are calculated to ensure accurate simulation across the entire turbine operating range. The resulting model therefore takes into consideration real sources of major loss, eliminating the use of ambiguous correction factors, while remaining equally simple to implement into current power system models. The new turbine formulation is validated against transient test data from a 119 MW Francis turbine unit, while simulations based on two existing conventional models are included for comparison.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2016.2574330</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2017-03, Vol.32 (2), p.1161-1168
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_7480816
source IEEE
subjects Data models
hydraulic turbine dynamic simulation model
Hydraulic turbines
Hydroelectric power generation
Load modeling
Mathematical model
power system dynamics
Transient analysis
title Physics-Based Hydraulic Turbine Model for System Dynamic Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Based%20Hydraulic%20Turbine%20Model%20for%20System%20Dynamic%20Studies&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Giosio,%20Dean%20R.&rft.date=2017-03&rft.volume=32&rft.issue=2&rft.spage=1161&rft.epage=1168&rft.pages=1161-1168&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2016.2574330&rft_dat=%3Cieee_RIE%3E7480816%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7480816&rfr_iscdi=true