An Exploration of Designing a Hybrid Scale-Up/Out Hadoop Architecture Based on Performance Measurements

Scale-up machines perform better for jobs with small and median (KB, MB) data sizes, while scale-out machines perform better for jobs with large (GB, TB) data size. Since a workload usually consists of jobs with different data size levels, we propose building a hybrid Hadoop architecture that includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2017-02, Vol.28 (2), p.386-400
Hauptverfasser: Zhuozhao Li, Haiying Shen, Ligon, Walter, Denton, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scale-up machines perform better for jobs with small and median (KB, MB) data sizes, while scale-out machines perform better for jobs with large (GB, TB) data size. Since a workload usually consists of jobs with different data size levels, we propose building a hybrid Hadoop architecture that includes both scale-up and scale-out machines, which however is not trivial. The first challenge is workload data storage. Thousands of small data size jobs in a workload may overload the limited local disks of scale-up machines. Jobs from scale-up and scale-out machines may both request the same set of data, which leads to data transmission between the machines. The second challenge is to automatically schedule jobs to either scale-up or scale-out cluster to achieve the best performance. We conduct a thorough performance measurement of different applications on scale-up and scale-out clusters, configured with Hadoop Distributed File System (HDFS) and a remote file system (i.e., OFS), respectively. We find that using OFS rather than HDFS can solve the data storage challenge. Also, we identify the factors that determine the performance differences on the scale-up and scale-out clusters and their cross points to make the choice. Accordingly, we design and implement the hybrid scale-up/out Hadoop architecture. Our trace-driven experimental results show that our hybrid architecture outperforms both the traditional Hadoop architecture with HDFS and with OFS in terms of job completion time, throughput and job failure rate.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2016.2573820