Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition

In this paper, a multiscale adaptive fault diagnosis (MAFD) method based on signal symmetry reconstitution preprocessing (SSRP) is proposed to realize fault diagnosis for any switch of the microgrid inverter under changing load condition. The MAFD method is composed of SSRP, multiscale features extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2018-03, Vol.9 (2), p.797-806
Hauptverfasser: Wang, Zhanshan, Huang, Zhanjun, Song, Chonghui, Zhang, Huaguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 2
container_start_page 797
container_title IEEE transactions on smart grid
container_volume 9
creator Wang, Zhanshan
Huang, Zhanjun
Song, Chonghui
Zhang, Huaguang
description In this paper, a multiscale adaptive fault diagnosis (MAFD) method based on signal symmetry reconstitution preprocessing (SSRP) is proposed to realize fault diagnosis for any switch of the microgrid inverter under changing load condition. The MAFD method is composed of SSRP, multiscale features extraction, and artificial neural network (ANN). First, the SSRP method is used to generate the input signals of multiscale features extraction, which can reduce the impact of the changing load. Then, the multiscale features extraction is realized by the means of multilevel signal decomposition and coefficients reconstruction to extract energy content of different frequency groups signal. It can represent the detailed signal change laws at different levels for three-phase current. Finally, in order to achieve data-based adaptive fault diagnosis, ANN is used to detect the type and the location of the inverter switch fault. Compared to conventional fault diagnosis methods, the proposed fault diagnosis method can accurately detect and locate fault for any switch of the microgrid inverter under changing load condition. The effectiveness of the proposed fault diagnosis method is verified through detailed simulation and experimental results.
doi_str_mv 10.1109/TSG.2016.2565667
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7467501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7467501</ieee_id><sourcerecordid>10_1109_TSG_2016_2565667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-e7dba984d4bbeff48192285460cbfcf69213732cdeac14e0cd95d6105a0761b73</originalsourceid><addsrcrecordid>eNo9kM9uwjAMxqNpk4YY90m75AXK8qdNyZGxjSGBNg04V2nidplKgpKCxEvsmdcKhA-2Zfv7ZP0QeqRkTCmRz5v1fMwIFWOWiUyI_AYNqExlwomgt9c-4_doFOMv6YJzLpgcoL_VoWlt1KoBPDVq39oj4HfVDfGrVbXz0Ub8oiIY7B1e29qpBq9Pux204YS_QXsXW9seWtutvwLsg9cQo3U1rnzAK6uDr4M1eOGOEFoIeOtMl2c_ytX91dIrg2feGdtbPKC7SjURRpc6RNv3t83sI1l-zhez6TLRTPA2gdyUSk5Sk5YlVFU6oZKxSZYKostKV0IyynPOtAGlaQpEG5kZQUmmSC5omfMhImff7r0YA1TFPtidCqeCkqJHWnRIix5pcUHaSZ7OEgsA1_M8FXlGKP8Hz3l1xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhanshan ; Huang, Zhanjun ; Song, Chonghui ; Zhang, Huaguang</creator><creatorcontrib>Wang, Zhanshan ; Huang, Zhanjun ; Song, Chonghui ; Zhang, Huaguang</creatorcontrib><description>In this paper, a multiscale adaptive fault diagnosis (MAFD) method based on signal symmetry reconstitution preprocessing (SSRP) is proposed to realize fault diagnosis for any switch of the microgrid inverter under changing load condition. The MAFD method is composed of SSRP, multiscale features extraction, and artificial neural network (ANN). First, the SSRP method is used to generate the input signals of multiscale features extraction, which can reduce the impact of the changing load. Then, the multiscale features extraction is realized by the means of multilevel signal decomposition and coefficients reconstruction to extract energy content of different frequency groups signal. It can represent the detailed signal change laws at different levels for three-phase current. Finally, in order to achieve data-based adaptive fault diagnosis, ANN is used to detect the type and the location of the inverter switch fault. Compared to conventional fault diagnosis methods, the proposed fault diagnosis method can accurately detect and locate fault for any switch of the microgrid inverter under changing load condition. The effectiveness of the proposed fault diagnosis method is verified through detailed simulation and experimental results.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2565667</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Fault diagnosis ; Feature extraction ; Inverters ; Load modeling ; Microgird inverter ; Microgrids ; multiscale adaptive fault diagnosis ; neural network ; signal symmetry reconstitution preprocessing ; Switches</subject><ispartof>IEEE transactions on smart grid, 2018-03, Vol.9 (2), p.797-806</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-e7dba984d4bbeff48192285460cbfcf69213732cdeac14e0cd95d6105a0761b73</citedby><cites>FETCH-LOGICAL-c263t-e7dba984d4bbeff48192285460cbfcf69213732cdeac14e0cd95d6105a0761b73</cites><orcidid>0000-0002-0647-4050 ; 0000-0002-6022-4933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7467501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7467501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhanshan</creatorcontrib><creatorcontrib>Huang, Zhanjun</creatorcontrib><creatorcontrib>Song, Chonghui</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><title>Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In this paper, a multiscale adaptive fault diagnosis (MAFD) method based on signal symmetry reconstitution preprocessing (SSRP) is proposed to realize fault diagnosis for any switch of the microgrid inverter under changing load condition. The MAFD method is composed of SSRP, multiscale features extraction, and artificial neural network (ANN). First, the SSRP method is used to generate the input signals of multiscale features extraction, which can reduce the impact of the changing load. Then, the multiscale features extraction is realized by the means of multilevel signal decomposition and coefficients reconstruction to extract energy content of different frequency groups signal. It can represent the detailed signal change laws at different levels for three-phase current. Finally, in order to achieve data-based adaptive fault diagnosis, ANN is used to detect the type and the location of the inverter switch fault. Compared to conventional fault diagnosis methods, the proposed fault diagnosis method can accurately detect and locate fault for any switch of the microgrid inverter under changing load condition. The effectiveness of the proposed fault diagnosis method is verified through detailed simulation and experimental results.</description><subject>Artificial neural networks</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Inverters</subject><subject>Load modeling</subject><subject>Microgird inverter</subject><subject>Microgrids</subject><subject>multiscale adaptive fault diagnosis</subject><subject>neural network</subject><subject>signal symmetry reconstitution preprocessing</subject><subject>Switches</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9uwjAMxqNpk4YY90m75AXK8qdNyZGxjSGBNg04V2nidplKgpKCxEvsmdcKhA-2Zfv7ZP0QeqRkTCmRz5v1fMwIFWOWiUyI_AYNqExlwomgt9c-4_doFOMv6YJzLpgcoL_VoWlt1KoBPDVq39oj4HfVDfGrVbXz0Ub8oiIY7B1e29qpBq9Pux204YS_QXsXW9seWtutvwLsg9cQo3U1rnzAK6uDr4M1eOGOEFoIeOtMl2c_ytX91dIrg2feGdtbPKC7SjURRpc6RNv3t83sI1l-zhez6TLRTPA2gdyUSk5Sk5YlVFU6oZKxSZYKostKV0IyynPOtAGlaQpEG5kZQUmmSC5omfMhImff7r0YA1TFPtidCqeCkqJHWnRIix5pcUHaSZ7OEgsA1_M8FXlGKP8Hz3l1xQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Wang, Zhanshan</creator><creator>Huang, Zhanjun</creator><creator>Song, Chonghui</creator><creator>Zhang, Huaguang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0647-4050</orcidid><orcidid>https://orcid.org/0000-0002-6022-4933</orcidid></search><sort><creationdate>20180301</creationdate><title>Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition</title><author>Wang, Zhanshan ; Huang, Zhanjun ; Song, Chonghui ; Zhang, Huaguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-e7dba984d4bbeff48192285460cbfcf69213732cdeac14e0cd95d6105a0761b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Inverters</topic><topic>Load modeling</topic><topic>Microgird inverter</topic><topic>Microgrids</topic><topic>multiscale adaptive fault diagnosis</topic><topic>neural network</topic><topic>signal symmetry reconstitution preprocessing</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhanshan</creatorcontrib><creatorcontrib>Huang, Zhanjun</creatorcontrib><creatorcontrib>Song, Chonghui</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhanshan</au><au>Huang, Zhanjun</au><au>Song, Chonghui</au><au>Zhang, Huaguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>797</spage><epage>806</epage><pages>797-806</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In this paper, a multiscale adaptive fault diagnosis (MAFD) method based on signal symmetry reconstitution preprocessing (SSRP) is proposed to realize fault diagnosis for any switch of the microgrid inverter under changing load condition. The MAFD method is composed of SSRP, multiscale features extraction, and artificial neural network (ANN). First, the SSRP method is used to generate the input signals of multiscale features extraction, which can reduce the impact of the changing load. Then, the multiscale features extraction is realized by the means of multilevel signal decomposition and coefficients reconstruction to extract energy content of different frequency groups signal. It can represent the detailed signal change laws at different levels for three-phase current. Finally, in order to achieve data-based adaptive fault diagnosis, ANN is used to detect the type and the location of the inverter switch fault. Compared to conventional fault diagnosis methods, the proposed fault diagnosis method can accurately detect and locate fault for any switch of the microgrid inverter under changing load condition. The effectiveness of the proposed fault diagnosis method is verified through detailed simulation and experimental results.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2016.2565667</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0647-4050</orcidid><orcidid>https://orcid.org/0000-0002-6022-4933</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2018-03, Vol.9 (2), p.797-806
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_7467501
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Fault diagnosis
Feature extraction
Inverters
Load modeling
Microgird inverter
Microgrids
multiscale adaptive fault diagnosis
neural network
signal symmetry reconstitution preprocessing
Switches
title Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Adaptive%20Fault%20Diagnosis%20Based%20on%20Signal%20Symmetry%20Reconstitution%20Preprocessing%20for%20Microgrid%20Inverter%20Under%20Changing%20Load%20Condition&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wang,%20Zhanshan&rft.date=2018-03-01&rft.volume=9&rft.issue=2&rft.spage=797&rft.epage=806&rft.pages=797-806&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2565667&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2016_2565667%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7467501&rfr_iscdi=true