Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network

In this brief, we study first- and second-order consensus algorithms for the scale-free small-world Koch network, where vertices are subject to white noise. We focus on three cases of consensus schemes: (1) first-order leaderless algorithm; (2) first-order algorithm with a single leader; and (3) sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2017-01, Vol.25 (1), p.342-350
Hauptverfasser: Yi, Yuhao, Zhang, Zhongzhi, Shan, Liren, Chen, Guanrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 1
container_start_page 342
container_title IEEE transactions on control systems technology
container_volume 25
creator Yi, Yuhao
Zhang, Zhongzhi
Shan, Liren
Chen, Guanrong
description In this brief, we study first- and second-order consensus algorithms for the scale-free small-world Koch network, where vertices are subject to white noise. We focus on three cases of consensus schemes: (1) first-order leaderless algorithm; (2) first-order algorithm with a single leader; and (3) second-order leaderless algorithm. We are concerned with the coherence of the Koch network in the H 2 norm, which captures the level of agreement of vertices in face of stochastic disturbances. Based on the particular network construction, we derive explicit expressions of the coherence for all the three consensus algorithms, as well as their dependence on the network size. Particularly, for the first-order leader-follower model, we show that coherence relies on the shortest-path distance between the leader and the largest-degree vertices, as well as the degree of the leader. The asymptotic behaviors for coherence of the three consensus algorithms in Koch network behave differently from those associated with other networks lacking scale-free small-world features, indicating significant influences of the scale-free small-world topology on the performance of the consensus algorithms in noisy environments.
doi_str_mv 10.1109/TCST.2016.2550582
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7466120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7466120</ieee_id><sourcerecordid>1850231132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e286767a63cda3e0003d3ef535995291966b9a6062e63a8e47fce74ed108a9613</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-JyZmzRp-ziKU3FsYCc-hqy9dZ1dM5MW2b-3Y-LTPQ_fORc-Qm6BTwB4-rDK8tVEcNAToRRXiTgjI1AqYTzR6nzIXEumldSX5CqELecQKRGPyPbNrfvQtRgCdRWd1T50jNq2pDkWri3Z0pfoaebagG3oA502n87X3WYXaOU8tXTh6nCgeWEbZDOPSPOdbRr24XxT0ldXbOgCux_nv67JRWWbgDd_d0zeZ4-r7JnNl08v2XTOChlBx1AkOtax1bIorUTOuSwlVkqqNFUihVTrdWo11wK1tAlGcVVgHGEJPLGpBjkm96fdvXffPYbObF3v2-GlgURxIQGkGCg4UYV3IXiszN7XO-sPBrg5KjVHpeao1PwpHTp3p06NiP98HGkNgstf9BxxYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850231132</pqid></control><display><type>article</type><title>Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network</title><source>IEEE Electronic Library (IEL)</source><creator>Yi, Yuhao ; Zhang, Zhongzhi ; Shan, Liren ; Chen, Guanrong</creator><creatorcontrib>Yi, Yuhao ; Zhang, Zhongzhi ; Shan, Liren ; Chen, Guanrong</creatorcontrib><description>In this brief, we study first- and second-order consensus algorithms for the scale-free small-world Koch network, where vertices are subject to white noise. We focus on three cases of consensus schemes: (1) first-order leaderless algorithm; (2) first-order algorithm with a single leader; and (3) second-order leaderless algorithm. We are concerned with the coherence of the Koch network in the H 2 norm, which captures the level of agreement of vertices in face of stochastic disturbances. Based on the particular network construction, we derive explicit expressions of the coherence for all the three consensus algorithms, as well as their dependence on the network size. Particularly, for the first-order leader-follower model, we show that coherence relies on the shortest-path distance between the leader and the largest-degree vertices, as well as the degree of the leader. The asymptotic behaviors for coherence of the three consensus algorithms in Koch network behave differently from those associated with other networks lacking scale-free small-world features, indicating significant influences of the scale-free small-world topology on the performance of the consensus algorithms in noisy environments.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2016.2550582</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coherence ; Distributed average consensus ; Eigenvalues and eigenfunctions ; First order algorithms ; graph algorithm ; Heuristic algorithms ; Laplace equations ; Network topology ; noise ; Noise measurement ; Robustness ; scale-free network ; Shortest-path problems ; small-world network ; White noise</subject><ispartof>IEEE transactions on control systems technology, 2017-01, Vol.25 (1), p.342-350</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-e286767a63cda3e0003d3ef535995291966b9a6062e63a8e47fce74ed108a9613</citedby><cites>FETCH-LOGICAL-c341t-e286767a63cda3e0003d3ef535995291966b9a6062e63a8e47fce74ed108a9613</cites><orcidid>0000-0003-1260-2079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7466120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7466120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi, Yuhao</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><creatorcontrib>Shan, Liren</creatorcontrib><creatorcontrib>Chen, Guanrong</creatorcontrib><title>Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, we study first- and second-order consensus algorithms for the scale-free small-world Koch network, where vertices are subject to white noise. We focus on three cases of consensus schemes: (1) first-order leaderless algorithm; (2) first-order algorithm with a single leader; and (3) second-order leaderless algorithm. We are concerned with the coherence of the Koch network in the H 2 norm, which captures the level of agreement of vertices in face of stochastic disturbances. Based on the particular network construction, we derive explicit expressions of the coherence for all the three consensus algorithms, as well as their dependence on the network size. Particularly, for the first-order leader-follower model, we show that coherence relies on the shortest-path distance between the leader and the largest-degree vertices, as well as the degree of the leader. The asymptotic behaviors for coherence of the three consensus algorithms in Koch network behave differently from those associated with other networks lacking scale-free small-world features, indicating significant influences of the scale-free small-world topology on the performance of the consensus algorithms in noisy environments.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Distributed average consensus</subject><subject>Eigenvalues and eigenfunctions</subject><subject>First order algorithms</subject><subject>graph algorithm</subject><subject>Heuristic algorithms</subject><subject>Laplace equations</subject><subject>Network topology</subject><subject>noise</subject><subject>Noise measurement</subject><subject>Robustness</subject><subject>scale-free network</subject><subject>Shortest-path problems</subject><subject>small-world network</subject><subject>White noise</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-JyZmzRp-ziKU3FsYCc-hqy9dZ1dM5MW2b-3Y-LTPQ_fORc-Qm6BTwB4-rDK8tVEcNAToRRXiTgjI1AqYTzR6nzIXEumldSX5CqELecQKRGPyPbNrfvQtRgCdRWd1T50jNq2pDkWri3Z0pfoaebagG3oA502n87X3WYXaOU8tXTh6nCgeWEbZDOPSPOdbRr24XxT0ldXbOgCux_nv67JRWWbgDd_d0zeZ4-r7JnNl08v2XTOChlBx1AkOtax1bIorUTOuSwlVkqqNFUihVTrdWo11wK1tAlGcVVgHGEJPLGpBjkm96fdvXffPYbObF3v2-GlgURxIQGkGCg4UYV3IXiszN7XO-sPBrg5KjVHpeao1PwpHTp3p06NiP98HGkNgstf9BxxYQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Yi, Yuhao</creator><creator>Zhang, Zhongzhi</creator><creator>Shan, Liren</creator><creator>Chen, Guanrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1260-2079</orcidid></search><sort><creationdate>201701</creationdate><title>Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network</title><author>Yi, Yuhao ; Zhang, Zhongzhi ; Shan, Liren ; Chen, Guanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e286767a63cda3e0003d3ef535995291966b9a6062e63a8e47fce74ed108a9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Distributed average consensus</topic><topic>Eigenvalues and eigenfunctions</topic><topic>First order algorithms</topic><topic>graph algorithm</topic><topic>Heuristic algorithms</topic><topic>Laplace equations</topic><topic>Network topology</topic><topic>noise</topic><topic>Noise measurement</topic><topic>Robustness</topic><topic>scale-free network</topic><topic>Shortest-path problems</topic><topic>small-world network</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Yuhao</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><creatorcontrib>Shan, Liren</creatorcontrib><creatorcontrib>Chen, Guanrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi, Yuhao</au><au>Zhang, Zhongzhi</au><au>Shan, Liren</au><au>Chen, Guanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2017-01</date><risdate>2017</risdate><volume>25</volume><issue>1</issue><spage>342</spage><epage>350</epage><pages>342-350</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, we study first- and second-order consensus algorithms for the scale-free small-world Koch network, where vertices are subject to white noise. We focus on three cases of consensus schemes: (1) first-order leaderless algorithm; (2) first-order algorithm with a single leader; and (3) second-order leaderless algorithm. We are concerned with the coherence of the Koch network in the H 2 norm, which captures the level of agreement of vertices in face of stochastic disturbances. Based on the particular network construction, we derive explicit expressions of the coherence for all the three consensus algorithms, as well as their dependence on the network size. Particularly, for the first-order leader-follower model, we show that coherence relies on the shortest-path distance between the leader and the largest-degree vertices, as well as the degree of the leader. The asymptotic behaviors for coherence of the three consensus algorithms in Koch network behave differently from those associated with other networks lacking scale-free small-world features, indicating significant influences of the scale-free small-world topology on the performance of the consensus algorithms in noisy environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2016.2550582</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1260-2079</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2017-01, Vol.25 (1), p.342-350
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_7466120
source IEEE Electronic Library (IEL)
subjects Algorithms
Coherence
Distributed average consensus
Eigenvalues and eigenfunctions
First order algorithms
graph algorithm
Heuristic algorithms
Laplace equations
Network topology
noise
Noise measurement
Robustness
scale-free network
Shortest-path problems
small-world network
White noise
title Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20First-%20and%20Second-Order%20Consensus%20Algorithms%20for%20a%20Noisy%20Scale-Free%20Small-World%20Koch%20Network&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Yi,%20Yuhao&rft.date=2017-01&rft.volume=25&rft.issue=1&rft.spage=342&rft.epage=350&rft.pages=342-350&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2016.2550582&rft_dat=%3Cproquest_RIE%3E1850231132%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850231132&rft_id=info:pmid/&rft_ieee_id=7466120&rfr_iscdi=true