Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A

To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2016-12, Vol.3 (6), p.1135-1145
Hauptverfasser: Yue Gao, Zhijin Qin, Zhiyong Feng, Qixun Zhang, Holland, Oliver, Dohler, Mischa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1145
container_issue 6
container_start_page 1135
container_title IEEE internet of things journal
container_volume 3
creator Yue Gao
Zhijin Qin
Zhiyong Feng
Qixun Zhang
Holland, Oliver
Dohler, Mischa
description To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.
doi_str_mv 10.1109/JIOT.2016.2562140
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7464259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7464259</ieee_id><sourcerecordid>1858791353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhgdRsNQ-gLgZcJ06Z25JlqVWrbQUbfbDTGZGUnKpk3SRtzexRVyd_8B_gQ-heyBzAJI-va932ZwSkHMqJAVOrtCEMhpHXEp6_U_folnbHgghQ0xAKifoY5_rUpvSYV1b_OnK4vdZNxle1aO02PT4ua91VeR4f3R5F04V3upaf7nK1R32TcBbusVFjTfZKlrcoRuvy9bNLneKspdVtnyLNrvX9XKxiXLGZBc5YayPU7CceEIhJt4Rw2wMPmexNx6MZV7HTIK3xEunKeHcJCwBJgxP2RQ9nmuPofk-ubZTh-YU6mFRQSKSoZkJNrjg7MpD07bBeXUMRaVDr4CokZ0a2amRnbqwGzIP50zhnPvzx1xyKlL2A_j3aBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858791353</pqid></control><display><type>article</type><title>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</title><source>IEEE Electronic Library (IEL)</source><creator>Yue Gao ; Zhijin Qin ; Zhiyong Feng ; Qixun Zhang ; Holland, Oliver ; Dohler, Mischa</creator><creatorcontrib>Yue Gao ; Zhijin Qin ; Zhiyong Feng ; Qixun Zhang ; Holland, Oliver ; Dohler, Mischa</creatorcontrib><description>To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2016.2562140</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analog TV ; Broadband ; Cognitive radio ; Cognitive radio (CR) ; Communication networks ; compressive sensing (CS) ; Computer simulation ; Detection ; geolocation database ; Internet of Things ; Internet of Things (IoT) ; machine-to-machine (M2M) ; Machine-to-machine communications ; machine-type communications (MTCs) ; Management ; Radio communications ; Radio spectrum management ; Sensors ; TD-LTE/LTE-A ; TV white space (TVWS)</subject><ispartof>IEEE internet of things journal, 2016-12, Vol.3 (6), p.1135-1145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</citedby><cites>FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</cites><orcidid>0000-0001-6502-9910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7464259$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Zhiyong Feng</creatorcontrib><creatorcontrib>Qixun Zhang</creatorcontrib><creatorcontrib>Holland, Oliver</creatorcontrib><creatorcontrib>Dohler, Mischa</creatorcontrib><title>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.</description><subject>Analog TV</subject><subject>Broadband</subject><subject>Cognitive radio</subject><subject>Cognitive radio (CR)</subject><subject>Communication networks</subject><subject>compressive sensing (CS)</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>geolocation database</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>machine-to-machine (M2M)</subject><subject>Machine-to-machine communications</subject><subject>machine-type communications (MTCs)</subject><subject>Management</subject><subject>Radio communications</subject><subject>Radio spectrum management</subject><subject>Sensors</subject><subject>TD-LTE/LTE-A</subject><subject>TV white space (TVWS)</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhgdRsNQ-gLgZcJ06Z25JlqVWrbQUbfbDTGZGUnKpk3SRtzexRVyd_8B_gQ-heyBzAJI-va932ZwSkHMqJAVOrtCEMhpHXEp6_U_folnbHgghQ0xAKifoY5_rUpvSYV1b_OnK4vdZNxle1aO02PT4ua91VeR4f3R5F04V3upaf7nK1R32TcBbusVFjTfZKlrcoRuvy9bNLneKspdVtnyLNrvX9XKxiXLGZBc5YayPU7CceEIhJt4Rw2wMPmexNx6MZV7HTIK3xEunKeHcJCwBJgxP2RQ9nmuPofk-ubZTh-YU6mFRQSKSoZkJNrjg7MpD07bBeXUMRaVDr4CokZ0a2amRnbqwGzIP50zhnPvzx1xyKlL2A_j3aBU</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Yue Gao</creator><creator>Zhijin Qin</creator><creator>Zhiyong Feng</creator><creator>Qixun Zhang</creator><creator>Holland, Oliver</creator><creator>Dohler, Mischa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6502-9910</orcidid></search><sort><creationdate>20161201</creationdate><title>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</title><author>Yue Gao ; Zhijin Qin ; Zhiyong Feng ; Qixun Zhang ; Holland, Oliver ; Dohler, Mischa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analog TV</topic><topic>Broadband</topic><topic>Cognitive radio</topic><topic>Cognitive radio (CR)</topic><topic>Communication networks</topic><topic>compressive sensing (CS)</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>geolocation database</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>machine-to-machine (M2M)</topic><topic>Machine-to-machine communications</topic><topic>machine-type communications (MTCs)</topic><topic>Management</topic><topic>Radio communications</topic><topic>Radio spectrum management</topic><topic>Sensors</topic><topic>TD-LTE/LTE-A</topic><topic>TV white space (TVWS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Zhiyong Feng</creatorcontrib><creatorcontrib>Qixun Zhang</creatorcontrib><creatorcontrib>Holland, Oliver</creatorcontrib><creatorcontrib>Dohler, Mischa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue Gao</au><au>Zhijin Qin</au><au>Zhiyong Feng</au><au>Qixun Zhang</au><au>Holland, Oliver</au><au>Dohler, Mischa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>3</volume><issue>6</issue><spage>1135</spage><epage>1145</epage><pages>1135-1145</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2016.2562140</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6502-9910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2016-12, Vol.3 (6), p.1135-1145
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_7464259
source IEEE Electronic Library (IEL)
subjects Analog TV
Broadband
Cognitive radio
Cognitive radio (CR)
Communication networks
compressive sensing (CS)
Computer simulation
Detection
geolocation database
Internet of Things
Internet of Things (IoT)
machine-to-machine (M2M)
Machine-to-machine communications
machine-type communications (MTCs)
Management
Radio communications
Radio spectrum management
Sensors
TD-LTE/LTE-A
TV white space (TVWS)
title Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20and%20Reliable%20IoT%20Enabled%20by%20Dynamic%20Spectrum%20Management%20for%20M2M%20in%20LTE-A&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yue%20Gao&rft.date=2016-12-01&rft.volume=3&rft.issue=6&rft.spage=1135&rft.epage=1145&rft.pages=1135-1145&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2016.2562140&rft_dat=%3Cproquest_ieee_%3E1858791353%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858791353&rft_id=info:pmid/&rft_ieee_id=7464259&rfr_iscdi=true