Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A
To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectiv...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2016-12, Vol.3 (6), p.1135-1145 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1145 |
---|---|
container_issue | 6 |
container_start_page | 1135 |
container_title | IEEE internet of things journal |
container_volume | 3 |
creator | Yue Gao Zhijin Qin Zhiyong Feng Qixun Zhang Holland, Oliver Dohler, Mischa |
description | To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data. |
doi_str_mv | 10.1109/JIOT.2016.2562140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7464259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7464259</ieee_id><sourcerecordid>1858791353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhgdRsNQ-gLgZcJ06Z25JlqVWrbQUbfbDTGZGUnKpk3SRtzexRVyd_8B_gQ-heyBzAJI-va932ZwSkHMqJAVOrtCEMhpHXEp6_U_folnbHgghQ0xAKifoY5_rUpvSYV1b_OnK4vdZNxle1aO02PT4ua91VeR4f3R5F04V3upaf7nK1R32TcBbusVFjTfZKlrcoRuvy9bNLneKspdVtnyLNrvX9XKxiXLGZBc5YayPU7CceEIhJt4Rw2wMPmexNx6MZV7HTIK3xEunKeHcJCwBJgxP2RQ9nmuPofk-ubZTh-YU6mFRQSKSoZkJNrjg7MpD07bBeXUMRaVDr4CokZ0a2amRnbqwGzIP50zhnPvzx1xyKlL2A_j3aBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858791353</pqid></control><display><type>article</type><title>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</title><source>IEEE Electronic Library (IEL)</source><creator>Yue Gao ; Zhijin Qin ; Zhiyong Feng ; Qixun Zhang ; Holland, Oliver ; Dohler, Mischa</creator><creatorcontrib>Yue Gao ; Zhijin Qin ; Zhiyong Feng ; Qixun Zhang ; Holland, Oliver ; Dohler, Mischa</creatorcontrib><description>To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2016.2562140</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analog TV ; Broadband ; Cognitive radio ; Cognitive radio (CR) ; Communication networks ; compressive sensing (CS) ; Computer simulation ; Detection ; geolocation database ; Internet of Things ; Internet of Things (IoT) ; machine-to-machine (M2M) ; Machine-to-machine communications ; machine-type communications (MTCs) ; Management ; Radio communications ; Radio spectrum management ; Sensors ; TD-LTE/LTE-A ; TV white space (TVWS)</subject><ispartof>IEEE internet of things journal, 2016-12, Vol.3 (6), p.1135-1145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</citedby><cites>FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</cites><orcidid>0000-0001-6502-9910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7464259$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Zhiyong Feng</creatorcontrib><creatorcontrib>Qixun Zhang</creatorcontrib><creatorcontrib>Holland, Oliver</creatorcontrib><creatorcontrib>Dohler, Mischa</creatorcontrib><title>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.</description><subject>Analog TV</subject><subject>Broadband</subject><subject>Cognitive radio</subject><subject>Cognitive radio (CR)</subject><subject>Communication networks</subject><subject>compressive sensing (CS)</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>geolocation database</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>machine-to-machine (M2M)</subject><subject>Machine-to-machine communications</subject><subject>machine-type communications (MTCs)</subject><subject>Management</subject><subject>Radio communications</subject><subject>Radio spectrum management</subject><subject>Sensors</subject><subject>TD-LTE/LTE-A</subject><subject>TV white space (TVWS)</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhgdRsNQ-gLgZcJ06Z25JlqVWrbQUbfbDTGZGUnKpk3SRtzexRVyd_8B_gQ-heyBzAJI-va932ZwSkHMqJAVOrtCEMhpHXEp6_U_folnbHgghQ0xAKifoY5_rUpvSYV1b_OnK4vdZNxle1aO02PT4ua91VeR4f3R5F04V3upaf7nK1R32TcBbusVFjTfZKlrcoRuvy9bNLneKspdVtnyLNrvX9XKxiXLGZBc5YayPU7CceEIhJt4Rw2wMPmexNx6MZV7HTIK3xEunKeHcJCwBJgxP2RQ9nmuPofk-ubZTh-YU6mFRQSKSoZkJNrjg7MpD07bBeXUMRaVDr4CokZ0a2amRnbqwGzIP50zhnPvzx1xyKlL2A_j3aBU</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Yue Gao</creator><creator>Zhijin Qin</creator><creator>Zhiyong Feng</creator><creator>Qixun Zhang</creator><creator>Holland, Oliver</creator><creator>Dohler, Mischa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6502-9910</orcidid></search><sort><creationdate>20161201</creationdate><title>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</title><author>Yue Gao ; Zhijin Qin ; Zhiyong Feng ; Qixun Zhang ; Holland, Oliver ; Dohler, Mischa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e5bdf791d40f02170fe0b3d71fc37fbf1bd3fa7361fd0f6ea2044b838135b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analog TV</topic><topic>Broadband</topic><topic>Cognitive radio</topic><topic>Cognitive radio (CR)</topic><topic>Communication networks</topic><topic>compressive sensing (CS)</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>geolocation database</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>machine-to-machine (M2M)</topic><topic>Machine-to-machine communications</topic><topic>machine-type communications (MTCs)</topic><topic>Management</topic><topic>Radio communications</topic><topic>Radio spectrum management</topic><topic>Sensors</topic><topic>TD-LTE/LTE-A</topic><topic>TV white space (TVWS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue Gao</creatorcontrib><creatorcontrib>Zhijin Qin</creatorcontrib><creatorcontrib>Zhiyong Feng</creatorcontrib><creatorcontrib>Qixun Zhang</creatorcontrib><creatorcontrib>Holland, Oliver</creatorcontrib><creatorcontrib>Dohler, Mischa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue Gao</au><au>Zhijin Qin</au><au>Zhiyong Feng</au><au>Qixun Zhang</au><au>Holland, Oliver</au><au>Dohler, Mischa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>3</volume><issue>6</issue><spage>1135</spage><epage>1145</epage><pages>1135-1145</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>To underpin the predicted growth of the Internet of Things (IoT), a highly scalable, reliable and available connectivity technology will be required. Whilst numerous technologies are available today, the industry trend suggests that cellular systems will play a central role in ensuring IoT connectivity globally. With spectrum generally a bottleneck for 3GPP technologies, TV white space (TVWS) approaches are a very promising means to handle the billions of connected devices in a highly flexible, reliable and scalable way. To this end, we propose a cognitive radio enabled TD-LET test-bed to realize the dynamic spectrum management over TVWS. In order to reduce the data acquisition and improve the detection performance, we propose a hybrid framework for the dynamic spectrum management of machine-to-machine networks. In the proposed framework, compressed sensing is implemented with the aim to reduce the sampling rates for wideband spectrum sensing. A noniterative reweighed compressive spectrum sensing algorithm is proposed with the weights being constructed by data from geolocation databases. Finally, the proposed hybrid framework is tested by means of simulated as well as real-world data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2016.2562140</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6502-9910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2016-12, Vol.3 (6), p.1135-1145 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_7464259 |
source | IEEE Electronic Library (IEL) |
subjects | Analog TV Broadband Cognitive radio Cognitive radio (CR) Communication networks compressive sensing (CS) Computer simulation Detection geolocation database Internet of Things Internet of Things (IoT) machine-to-machine (M2M) Machine-to-machine communications machine-type communications (MTCs) Management Radio communications Radio spectrum management Sensors TD-LTE/LTE-A TV white space (TVWS) |
title | Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20and%20Reliable%20IoT%20Enabled%20by%20Dynamic%20Spectrum%20Management%20for%20M2M%20in%20LTE-A&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yue%20Gao&rft.date=2016-12-01&rft.volume=3&rft.issue=6&rft.spage=1135&rft.epage=1145&rft.pages=1135-1145&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2016.2562140&rft_dat=%3Cproquest_ieee_%3E1858791353%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858791353&rft_id=info:pmid/&rft_ieee_id=7464259&rfr_iscdi=true |