Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images
Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2016-06, Vol.13 (6), p.865-869 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 6 |
container_start_page | 865 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 13 |
creator | Georgescu, Florin-Andrei Vaduva, Corina Raducanu, Dan Datcu, Mihai |
description | Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions. |
doi_str_mv | 10.1109/LGRS.2016.2551359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7458845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7458845</ieee_id><sourcerecordid>1816064618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRsFZ_gLgJuHGTOjfzXmppa6Gi-ADBxTCZTmxK2tSZiei_N7HFhStX98L9zoF7DkKngAcAWF3OJg-PgwwDH2SMAWFqD_WAMZliJmC_2ylLmZIvh-gohCXGGZVS9NDr2JnYeJeMPqM3Npb1Oilqn9ybaBfptQlungwrE0JZlNb8nOsiuW2qWIaNs62mSkbGx0VylwfnP7bIdGXeXDhGB4WpgjvZzT56Ho-ehjfp7G4yHV7NUsuIjCkDJbkFyLkyikrgguWKgskzIzlkIqfSFqLARM25wdxyThQT88xhllFLMOmji63vxtfvjQtRr8pgXVWZtauboKH1xJxykP9AseRZGw5p0fM_6LJu_Lp9RINQWECbZkfBlrK-DsG7Qm98uTL-SwPWXTO6a0Z3zehdM63mbKspnXO_vKBMSsrIN2lhiC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715983</pqid></control><display><type>article</type><title>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</title><source>IEEE Electronic Library (IEL)</source><creator>Georgescu, Florin-Andrei ; Vaduva, Corina ; Raducanu, Dan ; Datcu, Mihai</creator><creatorcontrib>Georgescu, Florin-Andrei ; Vaduva, Corina ; Raducanu, Dan ; Datcu, Mihai</creatorcontrib><description>Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2551359</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Assessments ; Bag-of-words (BoW) ; Classification ; Feature extraction ; Gabor filters ; Histograms ; Image analysis ; Image classification ; Image color analysis ; Image resolution ; Indexing ; Remote sensing ; Spectra ; spectral features ; Surface layer ; Texture ; Tiles ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-06, Vol.13 (6), p.865-869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</citedby><cites>FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7458845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7458845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Georgescu, Florin-Andrei</creatorcontrib><creatorcontrib>Vaduva, Corina</creatorcontrib><creatorcontrib>Raducanu, Dan</creatorcontrib><creatorcontrib>Datcu, Mihai</creatorcontrib><title>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.</description><subject>Assessments</subject><subject>Bag-of-words (BoW)</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Indexing</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>spectral features</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Tiles</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUtLw0AUhQdRsFZ_gLgJuHGTOjfzXmppa6Gi-ADBxTCZTmxK2tSZiei_N7HFhStX98L9zoF7DkKngAcAWF3OJg-PgwwDH2SMAWFqD_WAMZliJmC_2ylLmZIvh-gohCXGGZVS9NDr2JnYeJeMPqM3Npb1Oilqn9ybaBfptQlungwrE0JZlNb8nOsiuW2qWIaNs62mSkbGx0VylwfnP7bIdGXeXDhGB4WpgjvZzT56Ho-ehjfp7G4yHV7NUsuIjCkDJbkFyLkyikrgguWKgskzIzlkIqfSFqLARM25wdxyThQT88xhllFLMOmji63vxtfvjQtRr8pgXVWZtauboKH1xJxykP9AseRZGw5p0fM_6LJu_Lp9RINQWECbZkfBlrK-DsG7Qm98uTL-SwPWXTO6a0Z3zehdM63mbKspnXO_vKBMSsrIN2lhiC4</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Georgescu, Florin-Andrei</creator><creator>Vaduva, Corina</creator><creator>Raducanu, Dan</creator><creator>Datcu, Mihai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201606</creationdate><title>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</title><author>Georgescu, Florin-Andrei ; Vaduva, Corina ; Raducanu, Dan ; Datcu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assessments</topic><topic>Bag-of-words (BoW)</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Indexing</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>spectral features</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Tiles</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgescu, Florin-Andrei</creatorcontrib><creatorcontrib>Vaduva, Corina</creatorcontrib><creatorcontrib>Raducanu, Dan</creatorcontrib><creatorcontrib>Datcu, Mihai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgescu, Florin-Andrei</au><au>Vaduva, Corina</au><au>Raducanu, Dan</au><au>Datcu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-06</date><risdate>2016</risdate><volume>13</volume><issue>6</issue><spage>865</spage><epage>869</epage><pages>865-869</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2551359</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2016-06, Vol.13 (6), p.865-869 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_7458845 |
source | IEEE Electronic Library (IEL) |
subjects | Assessments Bag-of-words (BoW) Classification Feature extraction Gabor filters Histograms Image analysis Image classification Image color analysis Image resolution Indexing Remote sensing Spectra spectral features Surface layer Texture Tiles Transforms |
title | Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Extraction%20for%20Patch-Based%20Classification%20of%20Multispectral%20Earth%20Observation%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Georgescu,%20Florin-Andrei&rft.date=2016-06&rft.volume=13&rft.issue=6&rft.spage=865&rft.epage=869&rft.pages=865-869&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2551359&rft_dat=%3Cproquest_RIE%3E1816064618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715983&rft_id=info:pmid/&rft_ieee_id=7458845&rfr_iscdi=true |