Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images

Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2016-06, Vol.13 (6), p.865-869
Hauptverfasser: Georgescu, Florin-Andrei, Vaduva, Corina, Raducanu, Dan, Datcu, Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 6
container_start_page 865
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Georgescu, Florin-Andrei
Vaduva, Corina
Raducanu, Dan
Datcu, Mihai
description Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.
doi_str_mv 10.1109/LGRS.2016.2551359
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7458845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7458845</ieee_id><sourcerecordid>1816064618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRsFZ_gLgJuHGTOjfzXmppa6Gi-ADBxTCZTmxK2tSZiei_N7HFhStX98L9zoF7DkKngAcAWF3OJg-PgwwDH2SMAWFqD_WAMZliJmC_2ylLmZIvh-gohCXGGZVS9NDr2JnYeJeMPqM3Npb1Oilqn9ybaBfptQlungwrE0JZlNb8nOsiuW2qWIaNs62mSkbGx0VylwfnP7bIdGXeXDhGB4WpgjvZzT56Ho-ehjfp7G4yHV7NUsuIjCkDJbkFyLkyikrgguWKgskzIzlkIqfSFqLARM25wdxyThQT88xhllFLMOmji63vxtfvjQtRr8pgXVWZtauboKH1xJxykP9AseRZGw5p0fM_6LJu_Lp9RINQWECbZkfBlrK-DsG7Qm98uTL-SwPWXTO6a0Z3zehdM63mbKspnXO_vKBMSsrIN2lhiC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715983</pqid></control><display><type>article</type><title>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</title><source>IEEE Electronic Library (IEL)</source><creator>Georgescu, Florin-Andrei ; Vaduva, Corina ; Raducanu, Dan ; Datcu, Mihai</creator><creatorcontrib>Georgescu, Florin-Andrei ; Vaduva, Corina ; Raducanu, Dan ; Datcu, Mihai</creatorcontrib><description>Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2551359</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Assessments ; Bag-of-words (BoW) ; Classification ; Feature extraction ; Gabor filters ; Histograms ; Image analysis ; Image classification ; Image color analysis ; Image resolution ; Indexing ; Remote sensing ; Spectra ; spectral features ; Surface layer ; Texture ; Tiles ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-06, Vol.13 (6), p.865-869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</citedby><cites>FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7458845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7458845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Georgescu, Florin-Andrei</creatorcontrib><creatorcontrib>Vaduva, Corina</creatorcontrib><creatorcontrib>Raducanu, Dan</creatorcontrib><creatorcontrib>Datcu, Mihai</creatorcontrib><title>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.</description><subject>Assessments</subject><subject>Bag-of-words (BoW)</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Indexing</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>spectral features</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Tiles</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUtLw0AUhQdRsFZ_gLgJuHGTOjfzXmppa6Gi-ADBxTCZTmxK2tSZiei_N7HFhStX98L9zoF7DkKngAcAWF3OJg-PgwwDH2SMAWFqD_WAMZliJmC_2ylLmZIvh-gohCXGGZVS9NDr2JnYeJeMPqM3Npb1Oilqn9ybaBfptQlungwrE0JZlNb8nOsiuW2qWIaNs62mSkbGx0VylwfnP7bIdGXeXDhGB4WpgjvZzT56Ho-ehjfp7G4yHV7NUsuIjCkDJbkFyLkyikrgguWKgskzIzlkIqfSFqLARM25wdxyThQT88xhllFLMOmji63vxtfvjQtRr8pgXVWZtauboKH1xJxykP9AseRZGw5p0fM_6LJu_Lp9RINQWECbZkfBlrK-DsG7Qm98uTL-SwPWXTO6a0Z3zehdM63mbKspnXO_vKBMSsrIN2lhiC4</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Georgescu, Florin-Andrei</creator><creator>Vaduva, Corina</creator><creator>Raducanu, Dan</creator><creator>Datcu, Mihai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201606</creationdate><title>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</title><author>Georgescu, Florin-Andrei ; Vaduva, Corina ; Raducanu, Dan ; Datcu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-51986c11b69a9481675b941ab2a86127b48cf7f039d6a06c663957d2e0524c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assessments</topic><topic>Bag-of-words (BoW)</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Indexing</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>spectral features</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Tiles</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgescu, Florin-Andrei</creatorcontrib><creatorcontrib>Vaduva, Corina</creatorcontrib><creatorcontrib>Raducanu, Dan</creatorcontrib><creatorcontrib>Datcu, Mihai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgescu, Florin-Andrei</au><au>Vaduva, Corina</au><au>Raducanu, Dan</au><au>Datcu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-06</date><risdate>2016</risdate><volume>13</volume><issue>6</issue><spage>865</spage><epage>869</epage><pages>865-869</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Recently, various patch-based approaches have emerged for high and very high resolution multispectral image classification and indexing. This comes as a consequence of the most important particularity of multispectral data: objects are represented using several spectral bands that equally influence the classification process. In this letter, by using a patch-based approach, we are aiming at extracting descriptors that capture both spectral information and structural information. Using both the raw texture data and the high spectral resolution provided by the latest sensors, we propose enhanced image descriptors based on Gabor, spectral histograms, spectral indices, and bag-of-words framework. This approach leads to a scene classification that outperforms the results obtained when employing the initial image features. Experimental results on a WorldView-2 scene and also on a test collection of tiles created using Sentinel 2 data are presented. A detailed assessment of speed and precision was provided in comparison with state-of-the-art techniques. The broad applicability is guaranteed as the performances obtained for the two selected data sets are comparable, facilitating the exploration of previous and newly lunched satellite missions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2551359</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-06, Vol.13 (6), p.865-869
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_7458845
source IEEE Electronic Library (IEL)
subjects Assessments
Bag-of-words (BoW)
Classification
Feature extraction
Gabor filters
Histograms
Image analysis
Image classification
Image color analysis
Image resolution
Indexing
Remote sensing
Spectra
spectral features
Surface layer
Texture
Tiles
Transforms
title Feature Extraction for Patch-Based Classification of Multispectral Earth Observation Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Extraction%20for%20Patch-Based%20Classification%20of%20Multispectral%20Earth%20Observation%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Georgescu,%20Florin-Andrei&rft.date=2016-06&rft.volume=13&rft.issue=6&rft.spage=865&rft.epage=869&rft.pages=865-869&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2551359&rft_dat=%3Cproquest_RIE%3E1816064618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715983&rft_id=info:pmid/&rft_ieee_id=7458845&rfr_iscdi=true