Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs

For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2016-10, Vol.16 (20), p.7332-7341
Hauptverfasser: Lin, Kai, Xu, Tianlang, Song, Jeungeun, Qian, Yongfeng, Sun, Yanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7341
container_issue 20
container_start_page 7332
container_title IEEE sensors journal
container_volume 16
creator Lin, Kai
Xu, Tianlang
Song, Jeungeun
Qian, Yongfeng
Sun, Yanming
description For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.
doi_str_mv 10.1109/JSEN.2016.2558043
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7458163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7458163</ieee_id><sourcerecordid>10_1109_JSEN_2016_2558043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLzJH8jMV5Pmcq6bTsYEq-hdSdMTrdRWku7Cf29Lh1fn4fC-h8OD0DWjC8aouX3M1_sFp0wteJKkVIoTNGMDEaZlejqyoEQK_X6OLmL8opQZnegZ2u27CnDuPqE6NHX7gX0X8LJpSFYHcH3dtbbB27YPhzgwzqCftrhucZ49kzsbocIiw2_5Pl6iM2-bCFfHOUevm_XL6oHsnu63q-WOOK6SnmheVQy4lUb44QsKumRCcSlNmmrPqfSlT0uonNeOecO9UdIa76i1Q08pMUdsuutCF2MAX_yE-tuG34LRYtRRjDqKUUdx1DF0bqZODQD_eS2TlCkh_gBrF1s-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Kai ; Xu, Tianlang ; Song, Jeungeun ; Qian, Yongfeng ; Sun, Yanming</creator><creatorcontrib>Lin, Kai ; Xu, Tianlang ; Song, Jeungeun ; Qian, Yongfeng ; Sun, Yanming</creatorcontrib><description>For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2558043</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D WSNs ; Algorithm design and analysis ; Intrusion detection ; Monitoring ; Node scheduling ; SDR ; Sensors ; Three-dimensional displays ; Trajectory ; trajectory prediction ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2016-10, Vol.16 (20), p.7332-7341</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</citedby><cites>FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</cites><orcidid>0000-0002-9529-4317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7458163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7458163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Xu, Tianlang</creatorcontrib><creatorcontrib>Song, Jeungeun</creatorcontrib><creatorcontrib>Qian, Yongfeng</creatorcontrib><creatorcontrib>Sun, Yanming</creatorcontrib><title>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.</description><subject>3D WSNs</subject><subject>Algorithm design and analysis</subject><subject>Intrusion detection</subject><subject>Monitoring</subject><subject>Node scheduling</subject><subject>SDR</subject><subject>Sensors</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>trajectory prediction</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLzJH8jMV5Pmcq6bTsYEq-hdSdMTrdRWku7Cf29Lh1fn4fC-h8OD0DWjC8aouX3M1_sFp0wteJKkVIoTNGMDEaZlejqyoEQK_X6OLmL8opQZnegZ2u27CnDuPqE6NHX7gX0X8LJpSFYHcH3dtbbB27YPhzgwzqCftrhucZ49kzsbocIiw2_5Pl6iM2-bCFfHOUevm_XL6oHsnu63q-WOOK6SnmheVQy4lUb44QsKumRCcSlNmmrPqfSlT0uonNeOecO9UdIa76i1Q08pMUdsuutCF2MAX_yE-tuG34LRYtRRjDqKUUdx1DF0bqZODQD_eS2TlCkh_gBrF1s-</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Lin, Kai</creator><creator>Xu, Tianlang</creator><creator>Song, Jeungeun</creator><creator>Qian, Yongfeng</creator><creator>Sun, Yanming</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9529-4317</orcidid></search><sort><creationdate>20161015</creationdate><title>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</title><author>Lin, Kai ; Xu, Tianlang ; Song, Jeungeun ; Qian, Yongfeng ; Sun, Yanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D WSNs</topic><topic>Algorithm design and analysis</topic><topic>Intrusion detection</topic><topic>Monitoring</topic><topic>Node scheduling</topic><topic>SDR</topic><topic>Sensors</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>trajectory prediction</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Xu, Tianlang</creatorcontrib><creatorcontrib>Song, Jeungeun</creatorcontrib><creatorcontrib>Qian, Yongfeng</creatorcontrib><creatorcontrib>Sun, Yanming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Kai</au><au>Xu, Tianlang</au><au>Song, Jeungeun</au><au>Qian, Yongfeng</au><au>Sun, Yanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-10-15</date><risdate>2016</risdate><volume>16</volume><issue>20</issue><spage>7332</spage><epage>7341</epage><pages>7332-7341</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2016.2558043</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9529-4317</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2016-10, Vol.16 (20), p.7332-7341
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_7458163
source IEEE Electronic Library (IEL)
subjects 3D WSNs
Algorithm design and analysis
Intrusion detection
Monitoring
Node scheduling
SDR
Sensors
Three-dimensional displays
Trajectory
trajectory prediction
Wireless sensor networks
title Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Node%20Scheduling%20for%20All-Directional%20Intrusion%20Detection%20in%20SDR-Based%203D%20WSNs&rft.jtitle=IEEE%20sensors%20journal&rft.au=Lin,%20Kai&rft.date=2016-10-15&rft.volume=16&rft.issue=20&rft.spage=7332&rft.epage=7341&rft.pages=7332-7341&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2558043&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2016_2558043%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7458163&rfr_iscdi=true