Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs
For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sens...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2016-10, Vol.16 (20), p.7332-7341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7341 |
---|---|
container_issue | 20 |
container_start_page | 7332 |
container_title | IEEE sensors journal |
container_volume | 16 |
creator | Lin, Kai Xu, Tianlang Song, Jeungeun Qian, Yongfeng Sun, Yanming |
description | For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy. |
doi_str_mv | 10.1109/JSEN.2016.2558043 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7458163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7458163</ieee_id><sourcerecordid>10_1109_JSEN_2016_2558043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLzJH8jMV5Pmcq6bTsYEq-hdSdMTrdRWku7Cf29Lh1fn4fC-h8OD0DWjC8aouX3M1_sFp0wteJKkVIoTNGMDEaZlejqyoEQK_X6OLmL8opQZnegZ2u27CnDuPqE6NHX7gX0X8LJpSFYHcH3dtbbB27YPhzgwzqCftrhucZ49kzsbocIiw2_5Pl6iM2-bCFfHOUevm_XL6oHsnu63q-WOOK6SnmheVQy4lUb44QsKumRCcSlNmmrPqfSlT0uonNeOecO9UdIa76i1Q08pMUdsuutCF2MAX_yE-tuG34LRYtRRjDqKUUdx1DF0bqZODQD_eS2TlCkh_gBrF1s-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Kai ; Xu, Tianlang ; Song, Jeungeun ; Qian, Yongfeng ; Sun, Yanming</creator><creatorcontrib>Lin, Kai ; Xu, Tianlang ; Song, Jeungeun ; Qian, Yongfeng ; Sun, Yanming</creatorcontrib><description>For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2558043</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D WSNs ; Algorithm design and analysis ; Intrusion detection ; Monitoring ; Node scheduling ; SDR ; Sensors ; Three-dimensional displays ; Trajectory ; trajectory prediction ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2016-10, Vol.16 (20), p.7332-7341</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</citedby><cites>FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</cites><orcidid>0000-0002-9529-4317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7458163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7458163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Xu, Tianlang</creatorcontrib><creatorcontrib>Song, Jeungeun</creatorcontrib><creatorcontrib>Qian, Yongfeng</creatorcontrib><creatorcontrib>Sun, Yanming</creatorcontrib><title>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.</description><subject>3D WSNs</subject><subject>Algorithm design and analysis</subject><subject>Intrusion detection</subject><subject>Monitoring</subject><subject>Node scheduling</subject><subject>SDR</subject><subject>Sensors</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>trajectory prediction</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLzJH8jMV5Pmcq6bTsYEq-hdSdMTrdRWku7Cf29Lh1fn4fC-h8OD0DWjC8aouX3M1_sFp0wteJKkVIoTNGMDEaZlejqyoEQK_X6OLmL8opQZnegZ2u27CnDuPqE6NHX7gX0X8LJpSFYHcH3dtbbB27YPhzgwzqCftrhucZ49kzsbocIiw2_5Pl6iM2-bCFfHOUevm_XL6oHsnu63q-WOOK6SnmheVQy4lUb44QsKumRCcSlNmmrPqfSlT0uonNeOecO9UdIa76i1Q08pMUdsuutCF2MAX_yE-tuG34LRYtRRjDqKUUdx1DF0bqZODQD_eS2TlCkh_gBrF1s-</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Lin, Kai</creator><creator>Xu, Tianlang</creator><creator>Song, Jeungeun</creator><creator>Qian, Yongfeng</creator><creator>Sun, Yanming</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9529-4317</orcidid></search><sort><creationdate>20161015</creationdate><title>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</title><author>Lin, Kai ; Xu, Tianlang ; Song, Jeungeun ; Qian, Yongfeng ; Sun, Yanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-72dd1e2a493f9750e7b1362449887f204fbf8bedcf7c1f92f964a9fc0aad1e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D WSNs</topic><topic>Algorithm design and analysis</topic><topic>Intrusion detection</topic><topic>Monitoring</topic><topic>Node scheduling</topic><topic>SDR</topic><topic>Sensors</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>trajectory prediction</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Kai</creatorcontrib><creatorcontrib>Xu, Tianlang</creatorcontrib><creatorcontrib>Song, Jeungeun</creatorcontrib><creatorcontrib>Qian, Yongfeng</creatorcontrib><creatorcontrib>Sun, Yanming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Kai</au><au>Xu, Tianlang</au><au>Song, Jeungeun</au><au>Qian, Yongfeng</au><au>Sun, Yanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-10-15</date><risdate>2016</risdate><volume>16</volume><issue>20</issue><spage>7332</spage><epage>7341</epage><pages>7332-7341</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>For intrusion detection in 3D wireless sensor networks, the monitoring quality and the energy efficiency are both of great significance. In this paper, we develop a novel globoid model to ensure the all-directional detection quality while saving the network energy effectively, which divides the sensing area into outermost shell and interior region. We first propose an outermost shell coverage algorithm to guarantee the recognition quality of intruding events. Then, a Markov prediction model is designed to predict the motion probability in the adjacent area based on the historical trajectories of intruders. According to the predicted results, different working frequencies will be allocated to the covered nodes by using software defined radio technology. Moreover, a trajectory correction strategy is proposed to relocate the missing intruders during the operation. The performance evaluations show the efficiency of our scheme in terms of the network lifetime, trajectory prediction accuracy, and success rate of correction strategy.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2016.2558043</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9529-4317</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2016-10, Vol.16 (20), p.7332-7341 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_7458163 |
source | IEEE Electronic Library (IEL) |
subjects | 3D WSNs Algorithm design and analysis Intrusion detection Monitoring Node scheduling SDR Sensors Three-dimensional displays Trajectory trajectory prediction Wireless sensor networks |
title | Node Scheduling for All-Directional Intrusion Detection in SDR-Based 3D WSNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Node%20Scheduling%20for%20All-Directional%20Intrusion%20Detection%20in%20SDR-Based%203D%20WSNs&rft.jtitle=IEEE%20sensors%20journal&rft.au=Lin,%20Kai&rft.date=2016-10-15&rft.volume=16&rft.issue=20&rft.spage=7332&rft.epage=7341&rft.pages=7332-7341&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2558043&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2016_2558043%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7458163&rfr_iscdi=true |