Nonlinear dimension reduction for EEG-based epileptic seizure detection
Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | |
container_start_page | 595 |
container_title | |
container_volume | |
creator | Birjandtalab, J. Pouyan, M. Baran Nourani, M. |
description | Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches. |
doi_str_mv | 10.1109/BHI.2016.7455968 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7455968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7455968</ieee_id><sourcerecordid>1816035506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-17a9e38329cb3ae69114a679171b0d8a3ca5a8a39d59816ea33faf119dafa7993</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhQ0SEqV0R2LJyJLis2vHHqEqbaUKFpija3yRjNIk2MkAvx7T9gdwy7t7-u7pdIzdAZ8DcPv4vNnOBQc9LxZKWW0u2A0obrlIY3HJJgK0yYXg5prNYvzkqUyyrJ6w9WvXNr4lDJnzB2qj79oskBur4a-ru5CtVut8j5FcRr1vqB98lUXyP2OgzNFAR_KWXdXYRJqddco-Xlbvy02-e1tvl0-7vBJcDjkUaEkaKWy1l0jaAixQFxYK2HNnUFaoMIl1yqYTCaWssQawDmssrJVT9nDK7UP3NVIcyoOPFTUNttSNsYS0xaVSXP8D5UZLyfkiofcn1BNR2Qd_wPBdnr8pfwGPWWd5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1808633004</pqid></control><display><type>conference_proceeding</type><title>Nonlinear dimension reduction for EEG-based epileptic seizure detection</title><source>IEEE Electronic Library (IEL)</source><creator>Birjandtalab, J. ; Pouyan, M. Baran ; Nourani, M.</creator><creatorcontrib>Birjandtalab, J. ; Pouyan, M. Baran ; Nourani, M.</creatorcontrib><description>Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.</description><identifier>EISSN: 2168-2208</identifier><identifier>EISBN: 1509024557</identifier><identifier>EISBN: 9781509024551</identifier><identifier>DOI: 10.1109/BHI.2016.7455968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Bandwidth ; Brain modeling ; Classification ; Data visualization ; Electroencephalography ; Feature extraction ; Health ; Nonlinearity ; Patients ; Principal component analysis ; Reduction ; Seizing ; Three dimensional ; Three-dimensional displays</subject><ispartof>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, p.595-598</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-17a9e38329cb3ae69114a679171b0d8a3ca5a8a39d59816ea33faf119dafa7993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7455968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7455968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Birjandtalab, J.</creatorcontrib><creatorcontrib>Pouyan, M. Baran</creatorcontrib><creatorcontrib>Nourani, M.</creatorcontrib><title>Nonlinear dimension reduction for EEG-based epileptic seizure detection</title><title>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</title><addtitle>BHI</addtitle><description>Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Data visualization</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Health</subject><subject>Nonlinearity</subject><subject>Patients</subject><subject>Principal component analysis</subject><subject>Reduction</subject><subject>Seizing</subject><subject>Three dimensional</subject><subject>Three-dimensional displays</subject><issn>2168-2208</issn><isbn>1509024557</isbn><isbn>9781509024551</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkDFPwzAQhQ0SEqV0R2LJyJLis2vHHqEqbaUKFpija3yRjNIk2MkAvx7T9gdwy7t7-u7pdIzdAZ8DcPv4vNnOBQc9LxZKWW0u2A0obrlIY3HJJgK0yYXg5prNYvzkqUyyrJ6w9WvXNr4lDJnzB2qj79oskBur4a-ru5CtVut8j5FcRr1vqB98lUXyP2OgzNFAR_KWXdXYRJqddco-Xlbvy02-e1tvl0-7vBJcDjkUaEkaKWy1l0jaAixQFxYK2HNnUFaoMIl1yqYTCaWssQawDmssrJVT9nDK7UP3NVIcyoOPFTUNttSNsYS0xaVSXP8D5UZLyfkiofcn1BNR2Qd_wPBdnr8pfwGPWWd5</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Birjandtalab, J.</creator><creator>Pouyan, M. Baran</creator><creator>Nourani, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>Nonlinear dimension reduction for EEG-based epileptic seizure detection</title><author>Birjandtalab, J. ; Pouyan, M. Baran ; Nourani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-17a9e38329cb3ae69114a679171b0d8a3ca5a8a39d59816ea33faf119dafa7993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Data visualization</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Health</topic><topic>Nonlinearity</topic><topic>Patients</topic><topic>Principal component analysis</topic><topic>Reduction</topic><topic>Seizing</topic><topic>Three dimensional</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birjandtalab, J.</creatorcontrib><creatorcontrib>Pouyan, M. Baran</creatorcontrib><creatorcontrib>Nourani, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Birjandtalab, J.</au><au>Pouyan, M. Baran</au><au>Nourani, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear dimension reduction for EEG-based epileptic seizure detection</atitle><btitle>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</btitle><stitle>BHI</stitle><date>2016-02-01</date><risdate>2016</risdate><spage>595</spage><epage>598</epage><pages>595-598</pages><eissn>2168-2208</eissn><eisbn>1509024557</eisbn><eisbn>9781509024551</eisbn><abstract>Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.</abstract><pub>IEEE</pub><doi>10.1109/BHI.2016.7455968</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2168-2208 |
ispartof | 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, p.595-598 |
issn | 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_7455968 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bandwidth Brain modeling Classification Data visualization Electroencephalography Feature extraction Health Nonlinearity Patients Principal component analysis Reduction Seizing Three dimensional Three-dimensional displays |
title | Nonlinear dimension reduction for EEG-based epileptic seizure detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20dimension%20reduction%20for%20EEG-based%20epileptic%20seizure%20detection&rft.btitle=2016%20IEEE-EMBS%20International%20Conference%20on%20Biomedical%20and%20Health%20Informatics%20(BHI)&rft.au=Birjandtalab,%20J.&rft.date=2016-02-01&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.eissn=2168-2208&rft_id=info:doi/10.1109/BHI.2016.7455968&rft_dat=%3Cproquest_RIE%3E1816035506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1509024557&rft.eisbn_list=9781509024551&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808633004&rft_id=info:pmid/&rft_ieee_id=7455968&rfr_iscdi=true |