Nonlinear dimension reduction for EEG-based epileptic seizure detection

Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Birjandtalab, J., Pouyan, M. Baran, Nourani, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue
container_start_page 595
container_title
container_volume
creator Birjandtalab, J.
Pouyan, M. Baran
Nourani, M.
description Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.
doi_str_mv 10.1109/BHI.2016.7455968
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7455968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7455968</ieee_id><sourcerecordid>1816035506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-17a9e38329cb3ae69114a679171b0d8a3ca5a8a39d59816ea33faf119dafa7993</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhQ0SEqV0R2LJyJLis2vHHqEqbaUKFpija3yRjNIk2MkAvx7T9gdwy7t7-u7pdIzdAZ8DcPv4vNnOBQc9LxZKWW0u2A0obrlIY3HJJgK0yYXg5prNYvzkqUyyrJ6w9WvXNr4lDJnzB2qj79oskBur4a-ru5CtVut8j5FcRr1vqB98lUXyP2OgzNFAR_KWXdXYRJqddco-Xlbvy02-e1tvl0-7vBJcDjkUaEkaKWy1l0jaAixQFxYK2HNnUFaoMIl1yqYTCaWssQawDmssrJVT9nDK7UP3NVIcyoOPFTUNttSNsYS0xaVSXP8D5UZLyfkiofcn1BNR2Qd_wPBdnr8pfwGPWWd5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1808633004</pqid></control><display><type>conference_proceeding</type><title>Nonlinear dimension reduction for EEG-based epileptic seizure detection</title><source>IEEE Electronic Library (IEL)</source><creator>Birjandtalab, J. ; Pouyan, M. Baran ; Nourani, M.</creator><creatorcontrib>Birjandtalab, J. ; Pouyan, M. Baran ; Nourani, M.</creatorcontrib><description>Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.</description><identifier>EISSN: 2168-2208</identifier><identifier>EISBN: 1509024557</identifier><identifier>EISBN: 9781509024551</identifier><identifier>DOI: 10.1109/BHI.2016.7455968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Bandwidth ; Brain modeling ; Classification ; Data visualization ; Electroencephalography ; Feature extraction ; Health ; Nonlinearity ; Patients ; Principal component analysis ; Reduction ; Seizing ; Three dimensional ; Three-dimensional displays</subject><ispartof>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, p.595-598</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-17a9e38329cb3ae69114a679171b0d8a3ca5a8a39d59816ea33faf119dafa7993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7455968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7455968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Birjandtalab, J.</creatorcontrib><creatorcontrib>Pouyan, M. Baran</creatorcontrib><creatorcontrib>Nourani, M.</creatorcontrib><title>Nonlinear dimension reduction for EEG-based epileptic seizure detection</title><title>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</title><addtitle>BHI</addtitle><description>Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Data visualization</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Health</subject><subject>Nonlinearity</subject><subject>Patients</subject><subject>Principal component analysis</subject><subject>Reduction</subject><subject>Seizing</subject><subject>Three dimensional</subject><subject>Three-dimensional displays</subject><issn>2168-2208</issn><isbn>1509024557</isbn><isbn>9781509024551</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkDFPwzAQhQ0SEqV0R2LJyJLis2vHHqEqbaUKFpija3yRjNIk2MkAvx7T9gdwy7t7-u7pdIzdAZ8DcPv4vNnOBQc9LxZKWW0u2A0obrlIY3HJJgK0yYXg5prNYvzkqUyyrJ6w9WvXNr4lDJnzB2qj79oskBur4a-ru5CtVut8j5FcRr1vqB98lUXyP2OgzNFAR_KWXdXYRJqddco-Xlbvy02-e1tvl0-7vBJcDjkUaEkaKWy1l0jaAixQFxYK2HNnUFaoMIl1yqYTCaWssQawDmssrJVT9nDK7UP3NVIcyoOPFTUNttSNsYS0xaVSXP8D5UZLyfkiofcn1BNR2Qd_wPBdnr8pfwGPWWd5</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Birjandtalab, J.</creator><creator>Pouyan, M. Baran</creator><creator>Nourani, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>Nonlinear dimension reduction for EEG-based epileptic seizure detection</title><author>Birjandtalab, J. ; Pouyan, M. Baran ; Nourani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-17a9e38329cb3ae69114a679171b0d8a3ca5a8a39d59816ea33faf119dafa7993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Data visualization</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Health</topic><topic>Nonlinearity</topic><topic>Patients</topic><topic>Principal component analysis</topic><topic>Reduction</topic><topic>Seizing</topic><topic>Three dimensional</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birjandtalab, J.</creatorcontrib><creatorcontrib>Pouyan, M. Baran</creatorcontrib><creatorcontrib>Nourani, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Birjandtalab, J.</au><au>Pouyan, M. Baran</au><au>Nourani, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear dimension reduction for EEG-based epileptic seizure detection</atitle><btitle>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</btitle><stitle>BHI</stitle><date>2016-02-01</date><risdate>2016</risdate><spage>595</spage><epage>598</epage><pages>595-598</pages><eissn>2168-2208</eissn><eisbn>1509024557</eisbn><eisbn>9781509024551</eisbn><abstract>Approximately 0.1 percent of epileptic patients die from unexpected deaths. In general, for intractable seizures, it is crucial to have an algorithm to accurately and automatically detect the seizures and notify care-givers to assist patients. EEG signals are known as definitive diagnosis of seizure events. In this work, we utilize the frequency domain features (normalized in-band power spectral density) for the EEG channels. We applied a nonlinear data-embedding technique based on stochastic neighbor distance metric to capture the relationships among data elements in high dimension and improve the accuracy of seizure detection. This proposed data embedding technique not only makes it possible to visualize data in two or three dimensions, but also tackles the inherent difficulties regarding high dimensional data classification such as time complexity and memory requirement. We also applied a patient specific KNN classification to detect seizure and non-seizure events. The results indicate that our nonlinear technique provides significantly better visualization and classification efficiency (F-measure greater than 87%) compared to conventional dimension reduction approaches.</abstract><pub>IEEE</pub><doi>10.1109/BHI.2016.7455968</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2168-2208
ispartof 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, p.595-598
issn 2168-2208
language eng
recordid cdi_ieee_primary_7455968
source IEEE Electronic Library (IEL)
subjects Algorithms
Bandwidth
Brain modeling
Classification
Data visualization
Electroencephalography
Feature extraction
Health
Nonlinearity
Patients
Principal component analysis
Reduction
Seizing
Three dimensional
Three-dimensional displays
title Nonlinear dimension reduction for EEG-based epileptic seizure detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20dimension%20reduction%20for%20EEG-based%20epileptic%20seizure%20detection&rft.btitle=2016%20IEEE-EMBS%20International%20Conference%20on%20Biomedical%20and%20Health%20Informatics%20(BHI)&rft.au=Birjandtalab,%20J.&rft.date=2016-02-01&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.eissn=2168-2208&rft_id=info:doi/10.1109/BHI.2016.7455968&rft_dat=%3Cproquest_RIE%3E1816035506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1509024557&rft.eisbn_list=9781509024551&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808633004&rft_id=info:pmid/&rft_ieee_id=7455968&rfr_iscdi=true