Voice-activity home care system

This work proposes a voice-activity home care system which can construct a life log associated with voices at home. Accordingly, the techniques of sound-pressure-level calculation, abnormal sound detection, noise reduction, text-independent speaker recognition and keyword spotting are developed. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Oscal T.-C, Tsai, Y. H., Su, C. W., Kuo, P. C., Lai, W. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue
container_start_page 110
container_title
container_volume
creator Chen, Oscal T.-C
Tsai, Y. H.
Su, C. W.
Kuo, P. C.
Lai, W. C.
description This work proposes a voice-activity home care system which can construct a life log associated with voices at home. Accordingly, the techniques of sound-pressure-level calculation, abnormal sound detection, noise reduction, text-independent speaker recognition and keyword spotting are developed. In abnormal sound detection and speaker recognition, we adopt the two-stage recognition processes of Gaussian Mixture Model (GMM) for sound rejection, and Support Vector Machine (SVM) for sound classification. The experimental results reveal that the proposed abnormal sound detection, speaker recognition, and word spotting can reach accuracy rates above 82%, 90%, and 87%, respectively. Based on the recognized abnormal sounds or special words, an emergent event can be identified for home care where a speaker is known as well. Finally, the abovementioned recognition results versus time scales can fairly build a daily life log for home care.
doi_str_mv 10.1109/BHI.2016.7455847
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7455847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7455847</ieee_id><sourcerecordid>1808627823</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-84ffd575b07ea84763dacf217654fc745e5f15d1c1587dc7f4088d416a0ed4833</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxVdBsNbeBQ_m6CVxZrP_ctRSbaHgRb2GdTOLK4mp2VTIt3el_QDOZXjDe48fw9gVQoEI1d3DelNwQFVoIaUR-oRdoIQKeJL6lM04KpNzDuacLWL8hDQmnSo1YzdvfXCUWzeGnzBO2UffUebsQFmc4kjdJTvzto20OO45e31cvSzX-fb5abO83-YBpRpzI7xvpJbvoMkmAlU21nmOWknhXcIi6VE26FAa3TjtBRjTCFQWqBGmLOfs9tC7G_rvPcWx7kJ01Lb2i_p9rDEBAy9T7B9WMIprw_9arw_WQET1bgidHab6-KXyF323WDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1808627823</pqid></control><display><type>conference_proceeding</type><title>Voice-activity home care system</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Oscal T.-C ; Tsai, Y. H. ; Su, C. W. ; Kuo, P. C. ; Lai, W. C.</creator><creatorcontrib>Chen, Oscal T.-C ; Tsai, Y. H. ; Su, C. W. ; Kuo, P. C. ; Lai, W. C.</creatorcontrib><description>This work proposes a voice-activity home care system which can construct a life log associated with voices at home. Accordingly, the techniques of sound-pressure-level calculation, abnormal sound detection, noise reduction, text-independent speaker recognition and keyword spotting are developed. In abnormal sound detection and speaker recognition, we adopt the two-stage recognition processes of Gaussian Mixture Model (GMM) for sound rejection, and Support Vector Machine (SVM) for sound classification. The experimental results reveal that the proposed abnormal sound detection, speaker recognition, and word spotting can reach accuracy rates above 82%, 90%, and 87%, respectively. Based on the recognized abnormal sounds or special words, an emergent event can be identified for home care where a speaker is known as well. Finally, the abovementioned recognition results versus time scales can fairly build a daily life log for home care.</description><identifier>EISSN: 2168-2208</identifier><identifier>EISBN: 1509024557</identifier><identifier>EISBN: 9781509024551</identifier><identifier>DOI: 10.1109/BHI.2016.7455847</identifier><language>eng</language><publisher>IEEE</publisher><subject>CARE system ; Conferences ; Construction ; Context ; daily log ; Gaussian mixture model ; Health ; keyword spotting ; Noise reduction ; Recognition ; Signal to noise ratio ; Sound ; Speaker recognition ; Special sound recognition ; Speech ; Speech recognition ; support vector machine ; Support vector machines</subject><ispartof>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, p.110-113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7455847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23929,23930,25139,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7455847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Oscal T.-C</creatorcontrib><creatorcontrib>Tsai, Y. H.</creatorcontrib><creatorcontrib>Su, C. W.</creatorcontrib><creatorcontrib>Kuo, P. C.</creatorcontrib><creatorcontrib>Lai, W. C.</creatorcontrib><title>Voice-activity home care system</title><title>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</title><addtitle>BHI</addtitle><description>This work proposes a voice-activity home care system which can construct a life log associated with voices at home. Accordingly, the techniques of sound-pressure-level calculation, abnormal sound detection, noise reduction, text-independent speaker recognition and keyword spotting are developed. In abnormal sound detection and speaker recognition, we adopt the two-stage recognition processes of Gaussian Mixture Model (GMM) for sound rejection, and Support Vector Machine (SVM) for sound classification. The experimental results reveal that the proposed abnormal sound detection, speaker recognition, and word spotting can reach accuracy rates above 82%, 90%, and 87%, respectively. Based on the recognized abnormal sounds or special words, an emergent event can be identified for home care where a speaker is known as well. Finally, the abovementioned recognition results versus time scales can fairly build a daily life log for home care.</description><subject>CARE system</subject><subject>Conferences</subject><subject>Construction</subject><subject>Context</subject><subject>daily log</subject><subject>Gaussian mixture model</subject><subject>Health</subject><subject>keyword spotting</subject><subject>Noise reduction</subject><subject>Recognition</subject><subject>Signal to noise ratio</subject><subject>Sound</subject><subject>Speaker recognition</subject><subject>Special sound recognition</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>2168-2208</issn><isbn>1509024557</isbn><isbn>9781509024551</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkE9Lw0AQxVdBsNbeBQ_m6CVxZrP_ctRSbaHgRb2GdTOLK4mp2VTIt3el_QDOZXjDe48fw9gVQoEI1d3DelNwQFVoIaUR-oRdoIQKeJL6lM04KpNzDuacLWL8hDQmnSo1YzdvfXCUWzeGnzBO2UffUebsQFmc4kjdJTvzto20OO45e31cvSzX-fb5abO83-YBpRpzI7xvpJbvoMkmAlU21nmOWknhXcIi6VE26FAa3TjtBRjTCFQWqBGmLOfs9tC7G_rvPcWx7kJ01Lb2i_p9rDEBAy9T7B9WMIprw_9arw_WQET1bgidHab6-KXyF323WDQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Chen, Oscal T.-C</creator><creator>Tsai, Y. H.</creator><creator>Su, C. W.</creator><creator>Kuo, P. C.</creator><creator>Lai, W. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>F28</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>Voice-activity home care system</title><author>Chen, Oscal T.-C ; Tsai, Y. H. ; Su, C. W. ; Kuo, P. C. ; Lai, W. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-84ffd575b07ea84763dacf217654fc745e5f15d1c1587dc7f4088d416a0ed4833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CARE system</topic><topic>Conferences</topic><topic>Construction</topic><topic>Context</topic><topic>daily log</topic><topic>Gaussian mixture model</topic><topic>Health</topic><topic>keyword spotting</topic><topic>Noise reduction</topic><topic>Recognition</topic><topic>Signal to noise ratio</topic><topic>Sound</topic><topic>Speaker recognition</topic><topic>Special sound recognition</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Oscal T.-C</creatorcontrib><creatorcontrib>Tsai, Y. H.</creatorcontrib><creatorcontrib>Su, C. W.</creatorcontrib><creatorcontrib>Kuo, P. C.</creatorcontrib><creatorcontrib>Lai, W. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Oscal T.-C</au><au>Tsai, Y. H.</au><au>Su, C. W.</au><au>Kuo, P. C.</au><au>Lai, W. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Voice-activity home care system</atitle><btitle>2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)</btitle><stitle>BHI</stitle><date>2016-02-01</date><risdate>2016</risdate><spage>110</spage><epage>113</epage><pages>110-113</pages><eissn>2168-2208</eissn><eisbn>1509024557</eisbn><eisbn>9781509024551</eisbn><abstract>This work proposes a voice-activity home care system which can construct a life log associated with voices at home. Accordingly, the techniques of sound-pressure-level calculation, abnormal sound detection, noise reduction, text-independent speaker recognition and keyword spotting are developed. In abnormal sound detection and speaker recognition, we adopt the two-stage recognition processes of Gaussian Mixture Model (GMM) for sound rejection, and Support Vector Machine (SVM) for sound classification. The experimental results reveal that the proposed abnormal sound detection, speaker recognition, and word spotting can reach accuracy rates above 82%, 90%, and 87%, respectively. Based on the recognized abnormal sounds or special words, an emergent event can be identified for home care where a speaker is known as well. Finally, the abovementioned recognition results versus time scales can fairly build a daily life log for home care.</abstract><pub>IEEE</pub><doi>10.1109/BHI.2016.7455847</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2168-2208
ispartof 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, p.110-113
issn 2168-2208
language eng
recordid cdi_ieee_primary_7455847
source IEEE Electronic Library (IEL)
subjects CARE system
Conferences
Construction
Context
daily log
Gaussian mixture model
Health
keyword spotting
Noise reduction
Recognition
Signal to noise ratio
Sound
Speaker recognition
Special sound recognition
Speech
Speech recognition
support vector machine
Support vector machines
title Voice-activity home care system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Voice-activity%20home%20care%20system&rft.btitle=2016%20IEEE-EMBS%20International%20Conference%20on%20Biomedical%20and%20Health%20Informatics%20(BHI)&rft.au=Chen,%20Oscal%20T.-C&rft.date=2016-02-01&rft.spage=110&rft.epage=113&rft.pages=110-113&rft.eissn=2168-2208&rft_id=info:doi/10.1109/BHI.2016.7455847&rft_dat=%3Cproquest_RIE%3E1808627823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1509024557&rft.eisbn_list=9781509024551&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808627823&rft_id=info:pmid/&rft_ieee_id=7455847&rfr_iscdi=true