Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking
This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2016-10, Vol.35 (10), p.2258-2269 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2269 |
---|---|
container_issue | 10 |
container_start_page | 2258 |
container_title | IEEE transactions on medical imaging |
container_volume | 35 |
creator | Marami, Bahram Scherrer, Benoit Afacan, Onur Erem, Burak Warfield, Simon K. Gholipour, Ali |
description | This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data. |
doi_str_mv | 10.1109/TMI.2016.2555244 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7454726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7454726</ieee_id><sourcerecordid>4223939641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxS3Eii2FOxISisSFS8r4K7EvSOzysZVaIZUiuFmO46Re0rjYyUr89zi0W7H4Ysnze88z8xB6gWGBMci32_VyQQAXC8I5J4w9QjPMucgJZz8eoxmQUuQABblET2O8BcCMg3yCLtM7ZQWVM3RY-8H5Pt_4aoxD9sE1zRinh-_WtbvB1tlV0K7P1ptltrHG93EIo5kk2XYX_Njusq-dMzZf2TvbJaR1idB_Pa90TPrjB9k2aPPT9e0zdNHoLtrnp3uOvn36uL2-yVdfPi-v369ywxgb8qbUwKWgUnCh63Q4LeqyYACCEVoLUtFKCqtrVhLSSGYYNaUsaAF1KU2F6Ry9O_oexmpva2P71FanDsHtdfitvHbqYaV3O9X6O8UxiLTLZPDmZBD8r9HGQe1dNLbrdG_9GBVOzWFSYCYT-vo_9NaPoU_jTRQGYDKNMkdwpEzwMQbbnJvBoKY4VYpTTXGqU5xJ8urfIc6C-_wS8PIIOGvtuVwyntZS0D8btKTb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831004998</pqid></control><display><type>article</type><title>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Marami, Bahram ; Scherrer, Benoit ; Afacan, Onur ; Erem, Burak ; Warfield, Simon K. ; Gholipour, Ali</creator><creatorcontrib>Marami, Bahram ; Scherrer, Benoit ; Afacan, Onur ; Erem, Burak ; Warfield, Simon K. ; Gholipour, Ali</creatorcontrib><description>This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2555244</identifier><identifier>PMID: 27834639</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Child ; Child, Preschool ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion-weighted MRI ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Infant ; Infant, Newborn ; Kalman filters ; Magnetic resonance imaging ; motion tracking ; motion-robust MRI ; Movement - physiology ; Noise measurement ; outlier-robust kalman filter ; Registration ; slice registration ; Time measurement ; Tracking</subject><ispartof>IEEE transactions on medical imaging, 2016-10, Vol.35 (10), p.2258-2269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</citedby><cites>FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</cites><orcidid>0000-0002-6997-8993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7454726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7454726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27834639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marami, Bahram</creatorcontrib><creatorcontrib>Scherrer, Benoit</creatorcontrib><creatorcontrib>Afacan, Onur</creatorcontrib><creatorcontrib>Erem, Burak</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><title>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion-weighted MRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Kalman filters</subject><subject>Magnetic resonance imaging</subject><subject>motion tracking</subject><subject>motion-robust MRI</subject><subject>Movement - physiology</subject><subject>Noise measurement</subject><subject>outlier-robust kalman filter</subject><subject>Registration</subject><subject>slice registration</subject><subject>Time measurement</subject><subject>Tracking</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc2P0zAQxS3Eii2FOxISisSFS8r4K7EvSOzysZVaIZUiuFmO46Re0rjYyUr89zi0W7H4Ysnze88z8xB6gWGBMci32_VyQQAXC8I5J4w9QjPMucgJZz8eoxmQUuQABblET2O8BcCMg3yCLtM7ZQWVM3RY-8H5Pt_4aoxD9sE1zRinh-_WtbvB1tlV0K7P1ptltrHG93EIo5kk2XYX_Njusq-dMzZf2TvbJaR1idB_Pa90TPrjB9k2aPPT9e0zdNHoLtrnp3uOvn36uL2-yVdfPi-v369ywxgb8qbUwKWgUnCh63Q4LeqyYACCEVoLUtFKCqtrVhLSSGYYNaUsaAF1KU2F6Ry9O_oexmpva2P71FanDsHtdfitvHbqYaV3O9X6O8UxiLTLZPDmZBD8r9HGQe1dNLbrdG_9GBVOzWFSYCYT-vo_9NaPoU_jTRQGYDKNMkdwpEzwMQbbnJvBoKY4VYpTTXGqU5xJ8urfIc6C-_wS8PIIOGvtuVwyntZS0D8btKTb</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Marami, Bahram</creator><creator>Scherrer, Benoit</creator><creator>Afacan, Onur</creator><creator>Erem, Burak</creator><creator>Warfield, Simon K.</creator><creator>Gholipour, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6997-8993</orcidid></search><sort><creationdate>201610</creationdate><title>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</title><author>Marami, Bahram ; Scherrer, Benoit ; Afacan, Onur ; Erem, Burak ; Warfield, Simon K. ; Gholipour, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion-weighted MRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Kalman filters</topic><topic>Magnetic resonance imaging</topic><topic>motion tracking</topic><topic>motion-robust MRI</topic><topic>Movement - physiology</topic><topic>Noise measurement</topic><topic>outlier-robust kalman filter</topic><topic>Registration</topic><topic>slice registration</topic><topic>Time measurement</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Marami, Bahram</creatorcontrib><creatorcontrib>Scherrer, Benoit</creatorcontrib><creatorcontrib>Afacan, Onur</creatorcontrib><creatorcontrib>Erem, Burak</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marami, Bahram</au><au>Scherrer, Benoit</au><au>Afacan, Onur</au><au>Erem, Burak</au><au>Warfield, Simon K.</au><au>Gholipour, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-10</date><risdate>2016</risdate><volume>35</volume><issue>10</issue><spage>2258</spage><epage>2269</epage><pages>2258-2269</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27834639</pmid><doi>10.1109/TMI.2016.2555244</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6997-8993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2016-10, Vol.35 (10), p.2258-2269 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_7454726 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Brain - diagnostic imaging Child Child, Preschool Diffusion Magnetic Resonance Imaging - methods Diffusion-weighted MRI Humans Image Processing, Computer-Assisted - methods Image reconstruction Infant Infant, Newborn Kalman filters Magnetic resonance imaging motion tracking motion-robust MRI Movement - physiology Noise measurement outlier-robust kalman filter Registration slice registration Time measurement Tracking |
title | Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion-Robust%20Diffusion-Weighted%20Brain%20MRI%20Reconstruction%20Through%20Slice-Level%20Registration-Based%20Motion%20Tracking&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Marami,%20Bahram&rft.date=2016-10&rft.volume=35&rft.issue=10&rft.spage=2258&rft.epage=2269&rft.pages=2258-2269&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2555244&rft_dat=%3Cproquest_RIE%3E4223939641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831004998&rft_id=info:pmid/27834639&rft_ieee_id=7454726&rfr_iscdi=true |