Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking

This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2016-10, Vol.35 (10), p.2258-2269
Hauptverfasser: Marami, Bahram, Scherrer, Benoit, Afacan, Onur, Erem, Burak, Warfield, Simon K., Gholipour, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2269
container_issue 10
container_start_page 2258
container_title IEEE transactions on medical imaging
container_volume 35
creator Marami, Bahram
Scherrer, Benoit
Afacan, Onur
Erem, Burak
Warfield, Simon K.
Gholipour, Ali
description This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.
doi_str_mv 10.1109/TMI.2016.2555244
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7454726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7454726</ieee_id><sourcerecordid>4223939641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</originalsourceid><addsrcrecordid>eNpdkc2P0zAQxS3Eii2FOxISisSFS8r4K7EvSOzysZVaIZUiuFmO46Re0rjYyUr89zi0W7H4Ysnze88z8xB6gWGBMci32_VyQQAXC8I5J4w9QjPMucgJZz8eoxmQUuQABblET2O8BcCMg3yCLtM7ZQWVM3RY-8H5Pt_4aoxD9sE1zRinh-_WtbvB1tlV0K7P1ptltrHG93EIo5kk2XYX_Njusq-dMzZf2TvbJaR1idB_Pa90TPrjB9k2aPPT9e0zdNHoLtrnp3uOvn36uL2-yVdfPi-v369ywxgb8qbUwKWgUnCh63Q4LeqyYACCEVoLUtFKCqtrVhLSSGYYNaUsaAF1KU2F6Ry9O_oexmpva2P71FanDsHtdfitvHbqYaV3O9X6O8UxiLTLZPDmZBD8r9HGQe1dNLbrdG_9GBVOzWFSYCYT-vo_9NaPoU_jTRQGYDKNMkdwpEzwMQbbnJvBoKY4VYpTTXGqU5xJ8urfIc6C-_wS8PIIOGvtuVwyntZS0D8btKTb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831004998</pqid></control><display><type>article</type><title>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Marami, Bahram ; Scherrer, Benoit ; Afacan, Onur ; Erem, Burak ; Warfield, Simon K. ; Gholipour, Ali</creator><creatorcontrib>Marami, Bahram ; Scherrer, Benoit ; Afacan, Onur ; Erem, Burak ; Warfield, Simon K. ; Gholipour, Ali</creatorcontrib><description>This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2555244</identifier><identifier>PMID: 27834639</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Child ; Child, Preschool ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion-weighted MRI ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Infant ; Infant, Newborn ; Kalman filters ; Magnetic resonance imaging ; motion tracking ; motion-robust MRI ; Movement - physiology ; Noise measurement ; outlier-robust kalman filter ; Registration ; slice registration ; Time measurement ; Tracking</subject><ispartof>IEEE transactions on medical imaging, 2016-10, Vol.35 (10), p.2258-2269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</citedby><cites>FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</cites><orcidid>0000-0002-6997-8993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7454726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7454726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27834639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marami, Bahram</creatorcontrib><creatorcontrib>Scherrer, Benoit</creatorcontrib><creatorcontrib>Afacan, Onur</creatorcontrib><creatorcontrib>Erem, Burak</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><title>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion-weighted MRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Kalman filters</subject><subject>Magnetic resonance imaging</subject><subject>motion tracking</subject><subject>motion-robust MRI</subject><subject>Movement - physiology</subject><subject>Noise measurement</subject><subject>outlier-robust kalman filter</subject><subject>Registration</subject><subject>slice registration</subject><subject>Time measurement</subject><subject>Tracking</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc2P0zAQxS3Eii2FOxISisSFS8r4K7EvSOzysZVaIZUiuFmO46Re0rjYyUr89zi0W7H4Ysnze88z8xB6gWGBMci32_VyQQAXC8I5J4w9QjPMucgJZz8eoxmQUuQABblET2O8BcCMg3yCLtM7ZQWVM3RY-8H5Pt_4aoxD9sE1zRinh-_WtbvB1tlV0K7P1ptltrHG93EIo5kk2XYX_Njusq-dMzZf2TvbJaR1idB_Pa90TPrjB9k2aPPT9e0zdNHoLtrnp3uOvn36uL2-yVdfPi-v369ywxgb8qbUwKWgUnCh63Q4LeqyYACCEVoLUtFKCqtrVhLSSGYYNaUsaAF1KU2F6Ry9O_oexmpva2P71FanDsHtdfitvHbqYaV3O9X6O8UxiLTLZPDmZBD8r9HGQe1dNLbrdG_9GBVOzWFSYCYT-vo_9NaPoU_jTRQGYDKNMkdwpEzwMQbbnJvBoKY4VYpTTXGqU5xJ8urfIc6C-_wS8PIIOGvtuVwyntZS0D8btKTb</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Marami, Bahram</creator><creator>Scherrer, Benoit</creator><creator>Afacan, Onur</creator><creator>Erem, Burak</creator><creator>Warfield, Simon K.</creator><creator>Gholipour, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6997-8993</orcidid></search><sort><creationdate>201610</creationdate><title>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</title><author>Marami, Bahram ; Scherrer, Benoit ; Afacan, Onur ; Erem, Burak ; Warfield, Simon K. ; Gholipour, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f7a059839858adddd536d764008423d82b3b98ead4722f94c43c796360d79cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion-weighted MRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Kalman filters</topic><topic>Magnetic resonance imaging</topic><topic>motion tracking</topic><topic>motion-robust MRI</topic><topic>Movement - physiology</topic><topic>Noise measurement</topic><topic>outlier-robust kalman filter</topic><topic>Registration</topic><topic>slice registration</topic><topic>Time measurement</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Marami, Bahram</creatorcontrib><creatorcontrib>Scherrer, Benoit</creatorcontrib><creatorcontrib>Afacan, Onur</creatorcontrib><creatorcontrib>Erem, Burak</creatorcontrib><creatorcontrib>Warfield, Simon K.</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marami, Bahram</au><au>Scherrer, Benoit</au><au>Afacan, Onur</au><au>Erem, Burak</au><au>Warfield, Simon K.</au><au>Gholipour, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-10</date><risdate>2016</risdate><volume>35</volume><issue>10</issue><spage>2258</spage><epage>2269</epage><pages>2258-2269</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27834639</pmid><doi>10.1109/TMI.2016.2555244</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6997-8993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2016-10, Vol.35 (10), p.2258-2269
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_7454726
source IEEE Electronic Library (IEL)
subjects Algorithms
Brain - diagnostic imaging
Child
Child, Preschool
Diffusion Magnetic Resonance Imaging - methods
Diffusion-weighted MRI
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Infant
Infant, Newborn
Kalman filters
Magnetic resonance imaging
motion tracking
motion-robust MRI
Movement - physiology
Noise measurement
outlier-robust kalman filter
Registration
slice registration
Time measurement
Tracking
title Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion-Robust%20Diffusion-Weighted%20Brain%20MRI%20Reconstruction%20Through%20Slice-Level%20Registration-Based%20Motion%20Tracking&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Marami,%20Bahram&rft.date=2016-10&rft.volume=35&rft.issue=10&rft.spage=2258&rft.epage=2269&rft.pages=2258-2269&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2555244&rft_dat=%3Cproquest_RIE%3E4223939641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831004998&rft_id=info:pmid/27834639&rft_ieee_id=7454726&rfr_iscdi=true