Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation
We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated rangi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2016-07, Vol.54 (7), p.4165-4177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4177 |
---|---|
container_issue | 7 |
container_start_page | 4165 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 54 |
creator | Zhigang Pan Glennie, Craig L. Fernandez-Diaz, Juan Carlos Legleiter, Carl J. Overstreet, Brandon |
description | We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU. |
doi_str_mv | 10.1109/TGRS.2016.2538089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7442846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7442846</ieee_id><sourcerecordid>4073224701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoIdu0PyD0IuilF280suSVjmm-YSGw2Z6NbI2yDra1leQE__tq2dBDTznN4X3eGYaHkHNgSwCmL7Z3m6clZ1AtuSwVU_qELEBKVbBKiE9kwUBXBVean5IvMb4wBkLCakHG2yl2fqTe0XV3fbmhjyHt_Jt5RefDEKkZLb2f9xjiHtsUTE8fBvOMYaY5p0870_f-jW66Vwz0l0m7ecCUw0NtO4Wms12a6U1M3WBSvvOVfHamj_jtfZ6R37c326v7Yv1493B1uS7aUupUNKoBW5YMG9tYMLKxDp202DJn0TLnSidAOSkUByWdc6KSkBGuJWeNcuUZ-Xncuw_-z4Qx1UMXW-x7M6KfYg2KS6ErJdUHUKYqzUvGMvrjP_TFT2HMj9Sw0rwSAHqVKThSbfAxBnT1PuT3w1wDqw-y6oOs-iCrfpeVO9-PnQ4R__ErIbgSVfkXcKaSQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792641197</pqid></control><display><type>article</type><title>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhigang Pan ; Glennie, Craig L. ; Fernandez-Diaz, Juan Carlos ; Legleiter, Carl J. ; Overstreet, Brandon</creator><creatorcontrib>Zhigang Pan ; Glennie, Craig L. ; Fernandez-Diaz, Juan Carlos ; Legleiter, Carl J. ; Overstreet, Brandon</creatorcontrib><description>We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2016.2538089</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Bathymetry ; Estimates ; Estimation ; Fish hatcheries ; Freshwater ; full-waveform light detection and ranging (LiDAR) ; hyperspectral imagery ; Hyperspectral imaging ; Imagery ; Laser radar ; Lidar ; Light detection and ranging ; Rivers ; Strategy ; support vector regression (SVR) ; Turbidity ; Water depth</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2016-07, Vol.54 (7), p.4165-4177</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</citedby><cites>FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</cites><orcidid>0000-0001-7303-8235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7442846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7442846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhigang Pan</creatorcontrib><creatorcontrib>Glennie, Craig L.</creatorcontrib><creatorcontrib>Fernandez-Diaz, Juan Carlos</creatorcontrib><creatorcontrib>Legleiter, Carl J.</creatorcontrib><creatorcontrib>Overstreet, Brandon</creatorcontrib><title>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.</description><subject>Atmospheric measurements</subject><subject>Bathymetry</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Fish hatcheries</subject><subject>Freshwater</subject><subject>full-waveform light detection and ranging (LiDAR)</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Imagery</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Light detection and ranging</subject><subject>Rivers</subject><subject>Strategy</subject><subject>support vector regression (SVR)</subject><subject>Turbidity</subject><subject>Water depth</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1r3DAQhkVoIdu0PyD0IuilF280suSVjmm-YSGw2Z6NbI2yDra1leQE__tq2dBDTznN4X3eGYaHkHNgSwCmL7Z3m6clZ1AtuSwVU_qELEBKVbBKiE9kwUBXBVean5IvMb4wBkLCakHG2yl2fqTe0XV3fbmhjyHt_Jt5RefDEKkZLb2f9xjiHtsUTE8fBvOMYaY5p0870_f-jW66Vwz0l0m7ecCUw0NtO4Wms12a6U1M3WBSvvOVfHamj_jtfZ6R37c326v7Yv1493B1uS7aUupUNKoBW5YMG9tYMLKxDp202DJn0TLnSidAOSkUByWdc6KSkBGuJWeNcuUZ-Xncuw_-z4Qx1UMXW-x7M6KfYg2KS6ErJdUHUKYqzUvGMvrjP_TFT2HMj9Sw0rwSAHqVKThSbfAxBnT1PuT3w1wDqw-y6oOs-iCrfpeVO9-PnQ4R__ErIbgSVfkXcKaSQQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Zhigang Pan</creator><creator>Glennie, Craig L.</creator><creator>Fernandez-Diaz, Juan Carlos</creator><creator>Legleiter, Carl J.</creator><creator>Overstreet, Brandon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0001-7303-8235</orcidid></search><sort><creationdate>201607</creationdate><title>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</title><author>Zhigang Pan ; Glennie, Craig L. ; Fernandez-Diaz, Juan Carlos ; Legleiter, Carl J. ; Overstreet, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric measurements</topic><topic>Bathymetry</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Fish hatcheries</topic><topic>Freshwater</topic><topic>full-waveform light detection and ranging (LiDAR)</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Imagery</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Light detection and ranging</topic><topic>Rivers</topic><topic>Strategy</topic><topic>support vector regression (SVR)</topic><topic>Turbidity</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhigang Pan</creatorcontrib><creatorcontrib>Glennie, Craig L.</creatorcontrib><creatorcontrib>Fernandez-Diaz, Juan Carlos</creatorcontrib><creatorcontrib>Legleiter, Carl J.</creatorcontrib><creatorcontrib>Overstreet, Brandon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhigang Pan</au><au>Glennie, Craig L.</au><au>Fernandez-Diaz, Juan Carlos</au><au>Legleiter, Carl J.</au><au>Overstreet, Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2016-07</date><risdate>2016</risdate><volume>54</volume><issue>7</issue><spage>4165</spage><epage>4177</epage><pages>4165-4177</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2016.2538089</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7303-8235</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2016-07, Vol.54 (7), p.4165-4177 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_7442846 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric measurements Bathymetry Estimates Estimation Fish hatcheries Freshwater full-waveform light detection and ranging (LiDAR) hyperspectral imagery Hyperspectral imaging Imagery Laser radar Lidar Light detection and ranging Rivers Strategy support vector regression (SVR) Turbidity Water depth |
title | Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20LiDAR%20Orthowaveforms%20and%20Hyperspectral%20Imagery%20for%20Shallow%20River%20Bathymetry%20and%20Turbidity%20Estimation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhigang%20Pan&rft.date=2016-07&rft.volume=54&rft.issue=7&rft.spage=4165&rft.epage=4177&rft.pages=4165-4177&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2016.2538089&rft_dat=%3Cproquest_RIE%3E4073224701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792641197&rft_id=info:pmid/&rft_ieee_id=7442846&rfr_iscdi=true |