Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation

We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated rangi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2016-07, Vol.54 (7), p.4165-4177
Hauptverfasser: Zhigang Pan, Glennie, Craig L., Fernandez-Diaz, Juan Carlos, Legleiter, Carl J., Overstreet, Brandon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4177
container_issue 7
container_start_page 4165
container_title IEEE transactions on geoscience and remote sensing
container_volume 54
creator Zhigang Pan
Glennie, Craig L.
Fernandez-Diaz, Juan Carlos
Legleiter, Carl J.
Overstreet, Brandon
description We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.
doi_str_mv 10.1109/TGRS.2016.2538089
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7442846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7442846</ieee_id><sourcerecordid>4073224701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoIdu0PyD0IuilF280suSVjmm-YSGw2Z6NbI2yDra1leQE__tq2dBDTznN4X3eGYaHkHNgSwCmL7Z3m6clZ1AtuSwVU_qELEBKVbBKiE9kwUBXBVean5IvMb4wBkLCakHG2yl2fqTe0XV3fbmhjyHt_Jt5RefDEKkZLb2f9xjiHtsUTE8fBvOMYaY5p0870_f-jW66Vwz0l0m7ecCUw0NtO4Wms12a6U1M3WBSvvOVfHamj_jtfZ6R37c326v7Yv1493B1uS7aUupUNKoBW5YMG9tYMLKxDp202DJn0TLnSidAOSkUByWdc6KSkBGuJWeNcuUZ-Xncuw_-z4Qx1UMXW-x7M6KfYg2KS6ErJdUHUKYqzUvGMvrjP_TFT2HMj9Sw0rwSAHqVKThSbfAxBnT1PuT3w1wDqw-y6oOs-iCrfpeVO9-PnQ4R__ErIbgSVfkXcKaSQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792641197</pqid></control><display><type>article</type><title>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhigang Pan ; Glennie, Craig L. ; Fernandez-Diaz, Juan Carlos ; Legleiter, Carl J. ; Overstreet, Brandon</creator><creatorcontrib>Zhigang Pan ; Glennie, Craig L. ; Fernandez-Diaz, Juan Carlos ; Legleiter, Carl J. ; Overstreet, Brandon</creatorcontrib><description>We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2016.2538089</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Bathymetry ; Estimates ; Estimation ; Fish hatcheries ; Freshwater ; full-waveform light detection and ranging (LiDAR) ; hyperspectral imagery ; Hyperspectral imaging ; Imagery ; Laser radar ; Lidar ; Light detection and ranging ; Rivers ; Strategy ; support vector regression (SVR) ; Turbidity ; Water depth</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2016-07, Vol.54 (7), p.4165-4177</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</citedby><cites>FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</cites><orcidid>0000-0001-7303-8235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7442846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7442846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhigang Pan</creatorcontrib><creatorcontrib>Glennie, Craig L.</creatorcontrib><creatorcontrib>Fernandez-Diaz, Juan Carlos</creatorcontrib><creatorcontrib>Legleiter, Carl J.</creatorcontrib><creatorcontrib>Overstreet, Brandon</creatorcontrib><title>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.</description><subject>Atmospheric measurements</subject><subject>Bathymetry</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Fish hatcheries</subject><subject>Freshwater</subject><subject>full-waveform light detection and ranging (LiDAR)</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Imagery</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Light detection and ranging</subject><subject>Rivers</subject><subject>Strategy</subject><subject>support vector regression (SVR)</subject><subject>Turbidity</subject><subject>Water depth</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1r3DAQhkVoIdu0PyD0IuilF280suSVjmm-YSGw2Z6NbI2yDra1leQE__tq2dBDTznN4X3eGYaHkHNgSwCmL7Z3m6clZ1AtuSwVU_qELEBKVbBKiE9kwUBXBVean5IvMb4wBkLCakHG2yl2fqTe0XV3fbmhjyHt_Jt5RefDEKkZLb2f9xjiHtsUTE8fBvOMYaY5p0870_f-jW66Vwz0l0m7ecCUw0NtO4Wms12a6U1M3WBSvvOVfHamj_jtfZ6R37c326v7Yv1493B1uS7aUupUNKoBW5YMG9tYMLKxDp202DJn0TLnSidAOSkUByWdc6KSkBGuJWeNcuUZ-Xncuw_-z4Qx1UMXW-x7M6KfYg2KS6ErJdUHUKYqzUvGMvrjP_TFT2HMj9Sw0rwSAHqVKThSbfAxBnT1PuT3w1wDqw-y6oOs-iCrfpeVO9-PnQ4R__ErIbgSVfkXcKaSQQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Zhigang Pan</creator><creator>Glennie, Craig L.</creator><creator>Fernandez-Diaz, Juan Carlos</creator><creator>Legleiter, Carl J.</creator><creator>Overstreet, Brandon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0001-7303-8235</orcidid></search><sort><creationdate>201607</creationdate><title>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</title><author>Zhigang Pan ; Glennie, Craig L. ; Fernandez-Diaz, Juan Carlos ; Legleiter, Carl J. ; Overstreet, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b8b1d330ebdbd1a5bdfef5dec0fded0ff3f418f5482185fff4651fef29520b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric measurements</topic><topic>Bathymetry</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Fish hatcheries</topic><topic>Freshwater</topic><topic>full-waveform light detection and ranging (LiDAR)</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Imagery</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Light detection and ranging</topic><topic>Rivers</topic><topic>Strategy</topic><topic>support vector regression (SVR)</topic><topic>Turbidity</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhigang Pan</creatorcontrib><creatorcontrib>Glennie, Craig L.</creatorcontrib><creatorcontrib>Fernandez-Diaz, Juan Carlos</creatorcontrib><creatorcontrib>Legleiter, Carl J.</creatorcontrib><creatorcontrib>Overstreet, Brandon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhigang Pan</au><au>Glennie, Craig L.</au><au>Fernandez-Diaz, Juan Carlos</au><au>Legleiter, Carl J.</au><au>Overstreet, Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2016-07</date><risdate>2016</risdate><volume>54</volume><issue>7</issue><spage>4165</spage><epage>4177</epage><pages>4165-4177</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2016.2538089</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7303-8235</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2016-07, Vol.54 (7), p.4165-4177
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_7442846
source IEEE Electronic Library (IEL)
subjects Atmospheric measurements
Bathymetry
Estimates
Estimation
Fish hatcheries
Freshwater
full-waveform light detection and ranging (LiDAR)
hyperspectral imagery
Hyperspectral imaging
Imagery
Laser radar
Lidar
Light detection and ranging
Rivers
Strategy
support vector regression (SVR)
Turbidity
Water depth
title Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery for Shallow River Bathymetry and Turbidity Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20LiDAR%20Orthowaveforms%20and%20Hyperspectral%20Imagery%20for%20Shallow%20River%20Bathymetry%20and%20Turbidity%20Estimation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhigang%20Pan&rft.date=2016-07&rft.volume=54&rft.issue=7&rft.spage=4165&rft.epage=4177&rft.pages=4165-4177&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2016.2538089&rft_dat=%3Cproquest_RIE%3E4073224701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792641197&rft_id=info:pmid/&rft_ieee_id=7442846&rfr_iscdi=true