Efficient Statistical Parameter Selection for Nonlinear Modeling of Process/Performance Variation

With the growing number of process variation (PV) sources in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for chip design and verification. However, the high dimensionality of parameter space, for PV analysis, is a serious modeling challenge f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2016-12, Vol.35 (12), p.1995-2007
Hauptverfasser: Ghasemzadeh Mohammadi, Hassan, Gaillardon, Pierre-Emmanuel, De Micheli, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2007
container_issue 12
container_start_page 1995
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 35
creator Ghasemzadeh Mohammadi, Hassan
Gaillardon, Pierre-Emmanuel
De Micheli, Giovanni
description With the growing number of process variation (PV) sources in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for chip design and verification. However, the high dimensionality of parameter space, for PV analysis, is a serious modeling challenge for emerging VLSI technologies. These parameters correspond to various interdie and intradie variations, and considerably increase the difficulties of design validation. Today's response surface models and most commonly used parameter reduction methods, such as principal component analysis and independent component analysis, limit parameter reduction to linear or quadratic form and they do not address the higher order of nonlinearity among process and performance parameters. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. This method relies on a learning-based nonlinear sparse regression, and performs a parameter selection in the input space rather than creating a new space. This method is capable of dealing with mixed Gaussian and non-Gaussian parameters and results in a more precise parameter selection considering statistical nonlinear dependencies among input and output parameters. The application of this method is demonstrated in digital circuit timing analysis in both FinFET and Silicon Nanowire technologies. The results confirm the efficiency of this method to significantly reduce the number of required simulations while keeping estimation error small.
doi_str_mv 10.1109/TCAD.2016.2547908
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7442830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7442830</ieee_id><sourcerecordid>1842282702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c6d8653c3b79ca2086fe5ce125dc6410c80aab8d3a6cee155eece84c3d0502453</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKs_QLwEPG87-drNHkutH1C10Op1SbOzkrLd1CQ9-O_dpeJp5vDeDDxCbhlMGINyupnPHiYcWD7hShYl6DMyYqUoMskUOycj4IXOAAq4JFcx7gCYVLwcEbNoGmcddomuk0kuJmdNS1cmmD0mDHSNLdrkfEcbH-ib71rXoQn01dfYr1_UN3QVvMUYpysMPbQ3nUX6aYIzg3dNLhrTRrz5m2Py8bjYzJ-z5fvTy3y2zCwvRcpsXutcCSu2RWkNB503qCwyrmqbSwZWgzFbXQuTW0SmFKJFLa2oQQGXSozJ_enuIfjvI8ZU7fwxdP3LimnJueYF8J5iJ8oGH2PApjoEtzfhp2JQDSWroWQ1lKz-SvbO3clxiPjPF1JyLUD8AlyacIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842282702</pqid></control><display><type>article</type><title>Efficient Statistical Parameter Selection for Nonlinear Modeling of Process/Performance Variation</title><source>IEEE Electronic Library (IEL)</source><creator>Ghasemzadeh Mohammadi, Hassan ; Gaillardon, Pierre-Emmanuel ; De Micheli, Giovanni</creator><creatorcontrib>Ghasemzadeh Mohammadi, Hassan ; Gaillardon, Pierre-Emmanuel ; De Micheli, Giovanni</creatorcontrib><description>With the growing number of process variation (PV) sources in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for chip design and verification. However, the high dimensionality of parameter space, for PV analysis, is a serious modeling challenge for emerging VLSI technologies. These parameters correspond to various interdie and intradie variations, and considerably increase the difficulties of design validation. Today's response surface models and most commonly used parameter reduction methods, such as principal component analysis and independent component analysis, limit parameter reduction to linear or quadratic form and they do not address the higher order of nonlinearity among process and performance parameters. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. This method relies on a learning-based nonlinear sparse regression, and performs a parameter selection in the input space rather than creating a new space. This method is capable of dealing with mixed Gaussian and non-Gaussian parameters and results in a more precise parameter selection considering statistical nonlinear dependencies among input and output parameters. The application of this method is demonstrated in digital circuit timing analysis in both FinFET and Silicon Nanowire technologies. The results confirm the efficiency of this method to significantly reduce the number of required simulations while keeping estimation error small.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2016.2547908</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Biological system modeling ; Circuit design ; Circuit modeling and simulation ; Computational modeling ; Computer simulation ; Correlation ; Digital electronics ; Independent component analysis ; Integrated circuit modeling ; Integrated circuits ; Mathematical models ; Modelling ; Nanowires ; Nonlinearity ; parameter reduction ; Principal component analysis ; Principal components analysis ; Process parameters ; process variation (PV) ; Quadratic forms ; Reduction ; Regression analysis ; Response surface methodology ; Statistical analysis ; Timing</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2016-12, Vol.35 (12), p.1995-2007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c6d8653c3b79ca2086fe5ce125dc6410c80aab8d3a6cee155eece84c3d0502453</citedby><cites>FETCH-LOGICAL-c293t-c6d8653c3b79ca2086fe5ce125dc6410c80aab8d3a6cee155eece84c3d0502453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7442830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7442830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghasemzadeh Mohammadi, Hassan</creatorcontrib><creatorcontrib>Gaillardon, Pierre-Emmanuel</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><title>Efficient Statistical Parameter Selection for Nonlinear Modeling of Process/Performance Variation</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>With the growing number of process variation (PV) sources in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for chip design and verification. However, the high dimensionality of parameter space, for PV analysis, is a serious modeling challenge for emerging VLSI technologies. These parameters correspond to various interdie and intradie variations, and considerably increase the difficulties of design validation. Today's response surface models and most commonly used parameter reduction methods, such as principal component analysis and independent component analysis, limit parameter reduction to linear or quadratic form and they do not address the higher order of nonlinearity among process and performance parameters. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. This method relies on a learning-based nonlinear sparse regression, and performs a parameter selection in the input space rather than creating a new space. This method is capable of dealing with mixed Gaussian and non-Gaussian parameters and results in a more precise parameter selection considering statistical nonlinear dependencies among input and output parameters. The application of this method is demonstrated in digital circuit timing analysis in both FinFET and Silicon Nanowire technologies. The results confirm the efficiency of this method to significantly reduce the number of required simulations while keeping estimation error small.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Circuit design</subject><subject>Circuit modeling and simulation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Digital electronics</subject><subject>Independent component analysis</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanowires</subject><subject>Nonlinearity</subject><subject>parameter reduction</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Process parameters</subject><subject>process variation (PV)</subject><subject>Quadratic forms</subject><subject>Reduction</subject><subject>Regression analysis</subject><subject>Response surface methodology</subject><subject>Statistical analysis</subject><subject>Timing</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQQIMoWKs_QLwEPG87-drNHkutH1C10Op1SbOzkrLd1CQ9-O_dpeJp5vDeDDxCbhlMGINyupnPHiYcWD7hShYl6DMyYqUoMskUOycj4IXOAAq4JFcx7gCYVLwcEbNoGmcddomuk0kuJmdNS1cmmD0mDHSNLdrkfEcbH-ib71rXoQn01dfYr1_UN3QVvMUYpysMPbQ3nUX6aYIzg3dNLhrTRrz5m2Py8bjYzJ-z5fvTy3y2zCwvRcpsXutcCSu2RWkNB503qCwyrmqbSwZWgzFbXQuTW0SmFKJFLa2oQQGXSozJ_enuIfjvI8ZU7fwxdP3LimnJueYF8J5iJ8oGH2PApjoEtzfhp2JQDSWroWQ1lKz-SvbO3clxiPjPF1JyLUD8AlyacIs</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Ghasemzadeh Mohammadi, Hassan</creator><creator>Gaillardon, Pierre-Emmanuel</creator><creator>De Micheli, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161201</creationdate><title>Efficient Statistical Parameter Selection for Nonlinear Modeling of Process/Performance Variation</title><author>Ghasemzadeh Mohammadi, Hassan ; Gaillardon, Pierre-Emmanuel ; De Micheli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c6d8653c3b79ca2086fe5ce125dc6410c80aab8d3a6cee155eece84c3d0502453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Circuit design</topic><topic>Circuit modeling and simulation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Digital electronics</topic><topic>Independent component analysis</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanowires</topic><topic>Nonlinearity</topic><topic>parameter reduction</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Process parameters</topic><topic>process variation (PV)</topic><topic>Quadratic forms</topic><topic>Reduction</topic><topic>Regression analysis</topic><topic>Response surface methodology</topic><topic>Statistical analysis</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasemzadeh Mohammadi, Hassan</creatorcontrib><creatorcontrib>Gaillardon, Pierre-Emmanuel</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghasemzadeh Mohammadi, Hassan</au><au>Gaillardon, Pierre-Emmanuel</au><au>De Micheli, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Statistical Parameter Selection for Nonlinear Modeling of Process/Performance Variation</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>35</volume><issue>12</issue><spage>1995</spage><epage>2007</epage><pages>1995-2007</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>With the growing number of process variation (PV) sources in deeply nano-scaled technologies, parameterized device and circuit modeling is becoming very important for chip design and verification. However, the high dimensionality of parameter space, for PV analysis, is a serious modeling challenge for emerging VLSI technologies. These parameters correspond to various interdie and intradie variations, and considerably increase the difficulties of design validation. Today's response surface models and most commonly used parameter reduction methods, such as principal component analysis and independent component analysis, limit parameter reduction to linear or quadratic form and they do not address the higher order of nonlinearity among process and performance parameters. In this paper, we propose and validate a feature selection method to reduce the circuit modeling complexity associated with high parameter dimensionality. This method relies on a learning-based nonlinear sparse regression, and performs a parameter selection in the input space rather than creating a new space. This method is capable of dealing with mixed Gaussian and non-Gaussian parameters and results in a more precise parameter selection considering statistical nonlinear dependencies among input and output parameters. The application of this method is demonstrated in digital circuit timing analysis in both FinFET and Silicon Nanowire technologies. The results confirm the efficiency of this method to significantly reduce the number of required simulations while keeping estimation error small.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2016.2547908</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2016-12, Vol.35 (12), p.1995-2007
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_7442830
source IEEE Electronic Library (IEL)
subjects Analytical models
Biological system modeling
Circuit design
Circuit modeling and simulation
Computational modeling
Computer simulation
Correlation
Digital electronics
Independent component analysis
Integrated circuit modeling
Integrated circuits
Mathematical models
Modelling
Nanowires
Nonlinearity
parameter reduction
Principal component analysis
Principal components analysis
Process parameters
process variation (PV)
Quadratic forms
Reduction
Regression analysis
Response surface methodology
Statistical analysis
Timing
title Efficient Statistical Parameter Selection for Nonlinear Modeling of Process/Performance Variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Statistical%20Parameter%20Selection%20for%20Nonlinear%20Modeling%20of%20Process/Performance%20Variation&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Ghasemzadeh%20Mohammadi,%20Hassan&rft.date=2016-12-01&rft.volume=35&rft.issue=12&rft.spage=1995&rft.epage=2007&rft.pages=1995-2007&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2016.2547908&rft_dat=%3Cproquest_RIE%3E1842282702%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842282702&rft_id=info:pmid/&rft_ieee_id=7442830&rfr_iscdi=true