Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy and Application
Physical resources are highly virtualized in today's datacenter-based cloud-computing networks. Servers, for example, are virtualized as Virtual Machines (VMs). Through abstraction of physical resources, server virtualization enables migration of VMs over the interconnecting network. VM migrati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cloud computing 2018-10, Vol.6 (4), p.967-976 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 976 |
---|---|
container_issue | 4 |
container_start_page | 967 |
container_title | IEEE transactions on cloud computing |
container_volume | 6 |
creator | Mandal, Uttam Chowdhury, Pulak Tornatore, Massimo Martel, Charles U. Mukherjee, Biswanath |
description | Physical resources are highly virtualized in today's datacenter-based cloud-computing networks. Servers, for example, are virtualized as Virtual Machines (VMs). Through abstraction of physical resources, server virtualization enables migration of VMs over the interconnecting network. VM migration can be used for load balancing, energy conservation, disaster protection, etc. Migration of a VM involves iterative memory copy and network re-configuration. Memory states are transferred in multiple phases to keep the VM alive during the migration process, with a small downtime for switchover. Significant network resources are consumed during this process. Migration also results in undesirable performance impacts. Suboptimal network bandwidth assignment, inaccurate pre-copy iterations, and high end-to-end network delay in wide-area networks (WAN) can exacerbate the performance degradation. In this study, we devise strategies to find suitable bandwidth and pre-copy iteration count to optimize different performance metrics of VM migration over a WAN. First, we formulate models to measure network resource consumption, migration duration, and migration downtime. Then, we propose a strategy to determine appropriate migration bandwidth and number of pre-copy iterations, and perform numerical experiments in multiple cloud environments with large number of migration requests. Results show that our approach consumes less network resources when compared with maximum and minimum-bandwidth provisioning strategies while using an order of magnitude less bandwidth than maximum-bandwidth strategy. It also achieves significantly lower migration duration than minimum-bandwidth scheme. |
doi_str_mv | 10.1109/TCC.2016.2545673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7439786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7439786</ieee_id><sourcerecordid>2151465333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1188de576abae7e0dc1cd50f2c76f8beb72ba48ba53cfa3d67b509f4cf0aec53</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOObeBV8CPnfmtk3S-jaLU2FDwaGPIU2TLaM2NW2V_XszN8Tzci-Xc86FD6FLIFMAkt-simIaE2DTmKaU8eQEjWJgWcSBwem__RxNum5LgjIKOeQj9H4nm-rbVv0Gv3j3ZTvrGtussXEev1nfD7LGS6k2ttF4adde9sGAbYOL2g3VLX7tw0mvdzjU4Fnb1lb9Wi7QmZF1pyfHOUar-f2qeIwWzw9PxWwRqTiHPgLIskpTzmQpNdekUqAqSkysODNZqUselzLNSkkTZWRSMV5SkptUGSK1oskYXR9qW-8-B931YusG34SPIgYKKaNJ0BiRg0t513VeG9F6-yH9TgARe4AiABR7gOIIMESuDhGrtf6z8zTJecaSHxIxbTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151465333</pqid></control><display><type>article</type><title>Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy and Application</title><source>IEEE Electronic Library (IEL)</source><creator>Mandal, Uttam ; Chowdhury, Pulak ; Tornatore, Massimo ; Martel, Charles U. ; Mukherjee, Biswanath</creator><creatorcontrib>Mandal, Uttam ; Chowdhury, Pulak ; Tornatore, Massimo ; Martel, Charles U. ; Mukherjee, Biswanath</creatorcontrib><description>Physical resources are highly virtualized in today's datacenter-based cloud-computing networks. Servers, for example, are virtualized as Virtual Machines (VMs). Through abstraction of physical resources, server virtualization enables migration of VMs over the interconnecting network. VM migration can be used for load balancing, energy conservation, disaster protection, etc. Migration of a VM involves iterative memory copy and network re-configuration. Memory states are transferred in multiple phases to keep the VM alive during the migration process, with a small downtime for switchover. Significant network resources are consumed during this process. Migration also results in undesirable performance impacts. Suboptimal network bandwidth assignment, inaccurate pre-copy iterations, and high end-to-end network delay in wide-area networks (WAN) can exacerbate the performance degradation. In this study, we devise strategies to find suitable bandwidth and pre-copy iteration count to optimize different performance metrics of VM migration over a WAN. First, we formulate models to measure network resource consumption, migration duration, and migration downtime. Then, we propose a strategy to determine appropriate migration bandwidth and number of pre-copy iterations, and perform numerical experiments in multiple cloud environments with large number of migration requests. Results show that our approach consumes less network resources when compared with maximum and minimum-bandwidth provisioning strategies while using an order of magnitude less bandwidth than maximum-bandwidth strategy. It also achieves significantly lower migration duration than minimum-bandwidth scheme.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2016.2545673</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE Computer Society</publisher><subject>Bandwidth ; bandwidth optimization ; bandwidth provisioning ; Bandwidths ; Cloud computing ; Cloud networks ; Downtime ; Energy conservation ; Iterative methods ; live VM migration ; Memory management ; Network function virtualization ; Optimization ; Performance degradation ; Performance measurement ; Provisioning ; Strategy ; Switching theory ; Virtual environments ; Virtual machining ; Virtual Network Function (VNF) ; Virtual networks ; VM memory dirtying rate ; Wide area networks</subject><ispartof>IEEE transactions on cloud computing, 2018-10, Vol.6 (4), p.967-976</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1188de576abae7e0dc1cd50f2c76f8beb72ba48ba53cfa3d67b509f4cf0aec53</citedby><cites>FETCH-LOGICAL-c291t-1188de576abae7e0dc1cd50f2c76f8beb72ba48ba53cfa3d67b509f4cf0aec53</cites><orcidid>0000-0002-6797-5780 ; 0000-0002-0403-2099 ; 0000-0002-1483-1257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7439786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7439786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mandal, Uttam</creatorcontrib><creatorcontrib>Chowdhury, Pulak</creatorcontrib><creatorcontrib>Tornatore, Massimo</creatorcontrib><creatorcontrib>Martel, Charles U.</creatorcontrib><creatorcontrib>Mukherjee, Biswanath</creatorcontrib><title>Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy and Application</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Physical resources are highly virtualized in today's datacenter-based cloud-computing networks. Servers, for example, are virtualized as Virtual Machines (VMs). Through abstraction of physical resources, server virtualization enables migration of VMs over the interconnecting network. VM migration can be used for load balancing, energy conservation, disaster protection, etc. Migration of a VM involves iterative memory copy and network re-configuration. Memory states are transferred in multiple phases to keep the VM alive during the migration process, with a small downtime for switchover. Significant network resources are consumed during this process. Migration also results in undesirable performance impacts. Suboptimal network bandwidth assignment, inaccurate pre-copy iterations, and high end-to-end network delay in wide-area networks (WAN) can exacerbate the performance degradation. In this study, we devise strategies to find suitable bandwidth and pre-copy iteration count to optimize different performance metrics of VM migration over a WAN. First, we formulate models to measure network resource consumption, migration duration, and migration downtime. Then, we propose a strategy to determine appropriate migration bandwidth and number of pre-copy iterations, and perform numerical experiments in multiple cloud environments with large number of migration requests. Results show that our approach consumes less network resources when compared with maximum and minimum-bandwidth provisioning strategies while using an order of magnitude less bandwidth than maximum-bandwidth strategy. It also achieves significantly lower migration duration than minimum-bandwidth scheme.</description><subject>Bandwidth</subject><subject>bandwidth optimization</subject><subject>bandwidth provisioning</subject><subject>Bandwidths</subject><subject>Cloud computing</subject><subject>Cloud networks</subject><subject>Downtime</subject><subject>Energy conservation</subject><subject>Iterative methods</subject><subject>live VM migration</subject><subject>Memory management</subject><subject>Network function virtualization</subject><subject>Optimization</subject><subject>Performance degradation</subject><subject>Performance measurement</subject><subject>Provisioning</subject><subject>Strategy</subject><subject>Switching theory</subject><subject>Virtual environments</subject><subject>Virtual machining</subject><subject>Virtual Network Function (VNF)</subject><subject>Virtual networks</subject><subject>VM memory dirtying rate</subject><subject>Wide area networks</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOObeBV8CPnfmtk3S-jaLU2FDwaGPIU2TLaM2NW2V_XszN8Tzci-Xc86FD6FLIFMAkt-simIaE2DTmKaU8eQEjWJgWcSBwem__RxNum5LgjIKOeQj9H4nm-rbVv0Gv3j3ZTvrGtussXEev1nfD7LGS6k2ttF4adde9sGAbYOL2g3VLX7tw0mvdzjU4Fnb1lb9Wi7QmZF1pyfHOUar-f2qeIwWzw9PxWwRqTiHPgLIskpTzmQpNdekUqAqSkysODNZqUselzLNSkkTZWRSMV5SkptUGSK1oskYXR9qW-8-B931YusG34SPIgYKKaNJ0BiRg0t513VeG9F6-yH9TgARe4AiABR7gOIIMESuDhGrtf6z8zTJecaSHxIxbTw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Mandal, Uttam</creator><creator>Chowdhury, Pulak</creator><creator>Tornatore, Massimo</creator><creator>Martel, Charles U.</creator><creator>Mukherjee, Biswanath</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6797-5780</orcidid><orcidid>https://orcid.org/0000-0002-0403-2099</orcidid><orcidid>https://orcid.org/0000-0002-1483-1257</orcidid></search><sort><creationdate>20181001</creationdate><title>Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy and Application</title><author>Mandal, Uttam ; Chowdhury, Pulak ; Tornatore, Massimo ; Martel, Charles U. ; Mukherjee, Biswanath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1188de576abae7e0dc1cd50f2c76f8beb72ba48ba53cfa3d67b509f4cf0aec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidth</topic><topic>bandwidth optimization</topic><topic>bandwidth provisioning</topic><topic>Bandwidths</topic><topic>Cloud computing</topic><topic>Cloud networks</topic><topic>Downtime</topic><topic>Energy conservation</topic><topic>Iterative methods</topic><topic>live VM migration</topic><topic>Memory management</topic><topic>Network function virtualization</topic><topic>Optimization</topic><topic>Performance degradation</topic><topic>Performance measurement</topic><topic>Provisioning</topic><topic>Strategy</topic><topic>Switching theory</topic><topic>Virtual environments</topic><topic>Virtual machining</topic><topic>Virtual Network Function (VNF)</topic><topic>Virtual networks</topic><topic>VM memory dirtying rate</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Uttam</creatorcontrib><creatorcontrib>Chowdhury, Pulak</creatorcontrib><creatorcontrib>Tornatore, Massimo</creatorcontrib><creatorcontrib>Martel, Charles U.</creatorcontrib><creatorcontrib>Mukherjee, Biswanath</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mandal, Uttam</au><au>Chowdhury, Pulak</au><au>Tornatore, Massimo</au><au>Martel, Charles U.</au><au>Mukherjee, Biswanath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy and Application</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>967</spage><epage>976</epage><pages>967-976</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Physical resources are highly virtualized in today's datacenter-based cloud-computing networks. Servers, for example, are virtualized as Virtual Machines (VMs). Through abstraction of physical resources, server virtualization enables migration of VMs over the interconnecting network. VM migration can be used for load balancing, energy conservation, disaster protection, etc. Migration of a VM involves iterative memory copy and network re-configuration. Memory states are transferred in multiple phases to keep the VM alive during the migration process, with a small downtime for switchover. Significant network resources are consumed during this process. Migration also results in undesirable performance impacts. Suboptimal network bandwidth assignment, inaccurate pre-copy iterations, and high end-to-end network delay in wide-area networks (WAN) can exacerbate the performance degradation. In this study, we devise strategies to find suitable bandwidth and pre-copy iteration count to optimize different performance metrics of VM migration over a WAN. First, we formulate models to measure network resource consumption, migration duration, and migration downtime. Then, we propose a strategy to determine appropriate migration bandwidth and number of pre-copy iterations, and perform numerical experiments in multiple cloud environments with large number of migration requests. Results show that our approach consumes less network resources when compared with maximum and minimum-bandwidth provisioning strategies while using an order of magnitude less bandwidth than maximum-bandwidth strategy. It also achieves significantly lower migration duration than minimum-bandwidth scheme.</abstract><cop>Piscataway</cop><pub>IEEE Computer Society</pub><doi>10.1109/TCC.2016.2545673</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6797-5780</orcidid><orcidid>https://orcid.org/0000-0002-0403-2099</orcidid><orcidid>https://orcid.org/0000-0002-1483-1257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-7161 |
ispartof | IEEE transactions on cloud computing, 2018-10, Vol.6 (4), p.967-976 |
issn | 2168-7161 2168-7161 2372-0018 |
language | eng |
recordid | cdi_ieee_primary_7439786 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth bandwidth optimization bandwidth provisioning Bandwidths Cloud computing Cloud networks Downtime Energy conservation Iterative methods live VM migration Memory management Network function virtualization Optimization Performance degradation Performance measurement Provisioning Strategy Switching theory Virtual environments Virtual machining Virtual Network Function (VNF) Virtual networks VM memory dirtying rate Wide area networks |
title | Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy and Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandwidth%20Provisioning%20for%20Virtual%20Machine%20Migration%20in%20Cloud:%20Strategy%20and%20Application&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Mandal,%20Uttam&rft.date=2018-10-01&rft.volume=6&rft.issue=4&rft.spage=967&rft.epage=976&rft.pages=967-976&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2016.2545673&rft_dat=%3Cproquest_RIE%3E2151465333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151465333&rft_id=info:pmid/&rft_ieee_id=7439786&rfr_iscdi=true |