Low bit rate image coding based on vector transformation with neural network approach

Vector transformation is a new method in unifying vector quantization (VQ) and transform coding. So far, the codebook generation that has been applied in this coding is the LBG algorithm. With the development of neural networks, especially Self Organizing Feature Maps (SOFM), there are some advantag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suksmono, A.B., Karsa, K., Tjondronegoro, S., Soegijoko, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue
container_start_page 603
container_title
container_volume
creator Suksmono, A.B.
Karsa, K.
Tjondronegoro, S.
Soegijoko, S.
description Vector transformation is a new method in unifying vector quantization (VQ) and transform coding. So far, the codebook generation that has been applied in this coding is the LBG algorithm. With the development of neural networks, especially Self Organizing Feature Maps (SOFM), there are some advantages that can be used to improve a system's performance. In this paper, we explore the application of the SOFM algorithm to generate the Vector Transform Coding (VTC) codebook and compare the result with some coding rates using the LBG algorithm.
doi_str_mv 10.1109/APCCAS.1998.743892
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_743892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>743892</ieee_id><sourcerecordid>743892</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-e1f9d6f2939c2aeb88f6f026a13b67675298f72a11a8bc0c5db10e7df2e4e8823</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0DbND2SlH7Crh21JS2P6AkMLTdfhyr5K1CaWkdWa_n0NyWwOzOIwQ8iGs5xzZh7q96apP3JujM5VIbURV-SOKc1kyYuK3ZD1NH2xJdJIJfUt-WzDTK1PNEJC6k-wR9qF3g97amHCnoaB_mKXQqQpwjC5EE-Q_NLOPh3ogD8RjgvSHOI3hXGMAbrDPbl2cJxwfeGKbJ8et81L1r49vzZ1m3mtUobcmb5ywkjTCUCrtascExVwaStVqVIY7ZQAzkHbjnVlbzlD1TuBBWot5IpszlqPiLsxLvPj3-78W_4DL99P_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low bit rate image coding based on vector transformation with neural network approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suksmono, A.B. ; Karsa, K. ; Tjondronegoro, S. ; Soegijoko, S.</creator><creatorcontrib>Suksmono, A.B. ; Karsa, K. ; Tjondronegoro, S. ; Soegijoko, S.</creatorcontrib><description>Vector transformation is a new method in unifying vector quantization (VQ) and transform coding. So far, the codebook generation that has been applied in this coding is the LBG algorithm. With the development of neural networks, especially Self Organizing Feature Maps (SOFM), there are some advantages that can be used to improve a system's performance. In this paper, we explore the application of the SOFM algorithm to generate the Vector Transform Coding (VTC) codebook and compare the result with some coding rates using the LBG algorithm.</description><identifier>ISBN: 0780351460</identifier><identifier>ISBN: 9780780351462</identifier><identifier>DOI: 10.1109/APCCAS.1998.743892</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Discrete wavelet transforms ; Image coding ; Neural networks ; Organizing ; Signal processing ; Signal processing algorithms ; Transform coding ; Vector quantization ; Video coding</subject><ispartof>IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242), 1998, p.603-606</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/743892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/743892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suksmono, A.B.</creatorcontrib><creatorcontrib>Karsa, K.</creatorcontrib><creatorcontrib>Tjondronegoro, S.</creatorcontrib><creatorcontrib>Soegijoko, S.</creatorcontrib><title>Low bit rate image coding based on vector transformation with neural network approach</title><title>IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242)</title><addtitle>APCCAS</addtitle><description>Vector transformation is a new method in unifying vector quantization (VQ) and transform coding. So far, the codebook generation that has been applied in this coding is the LBG algorithm. With the development of neural networks, especially Self Organizing Feature Maps (SOFM), there are some advantages that can be used to improve a system's performance. In this paper, we explore the application of the SOFM algorithm to generate the Vector Transform Coding (VTC) codebook and compare the result with some coding rates using the LBG algorithm.</description><subject>Bit rate</subject><subject>Discrete wavelet transforms</subject><subject>Image coding</subject><subject>Neural networks</subject><subject>Organizing</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Transform coding</subject><subject>Vector quantization</subject><subject>Video coding</subject><isbn>0780351460</isbn><isbn>9780780351462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURAWl0DbND2SlH7Crh21JS2P6AkMLTdfhyr5K1CaWkdWa_n0NyWwOzOIwQ8iGs5xzZh7q96apP3JujM5VIbURV-SOKc1kyYuK3ZD1NH2xJdJIJfUt-WzDTK1PNEJC6k-wR9qF3g97amHCnoaB_mKXQqQpwjC5EE-Q_NLOPh3ogD8RjgvSHOI3hXGMAbrDPbl2cJxwfeGKbJ8et81L1r49vzZ1m3mtUobcmb5ywkjTCUCrtascExVwaStVqVIY7ZQAzkHbjnVlbzlD1TuBBWot5IpszlqPiLsxLvPj3-78W_4DL99P_w</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Suksmono, A.B.</creator><creator>Karsa, K.</creator><creator>Tjondronegoro, S.</creator><creator>Soegijoko, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Low bit rate image coding based on vector transformation with neural network approach</title><author>Suksmono, A.B. ; Karsa, K. ; Tjondronegoro, S. ; Soegijoko, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-e1f9d6f2939c2aeb88f6f026a13b67675298f72a11a8bc0c5db10e7df2e4e8823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bit rate</topic><topic>Discrete wavelet transforms</topic><topic>Image coding</topic><topic>Neural networks</topic><topic>Organizing</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Transform coding</topic><topic>Vector quantization</topic><topic>Video coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Suksmono, A.B.</creatorcontrib><creatorcontrib>Karsa, K.</creatorcontrib><creatorcontrib>Tjondronegoro, S.</creatorcontrib><creatorcontrib>Soegijoko, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suksmono, A.B.</au><au>Karsa, K.</au><au>Tjondronegoro, S.</au><au>Soegijoko, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low bit rate image coding based on vector transformation with neural network approach</atitle><btitle>IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242)</btitle><stitle>APCCAS</stitle><date>1998</date><risdate>1998</risdate><spage>603</spage><epage>606</epage><pages>603-606</pages><isbn>0780351460</isbn><isbn>9780780351462</isbn><abstract>Vector transformation is a new method in unifying vector quantization (VQ) and transform coding. So far, the codebook generation that has been applied in this coding is the LBG algorithm. With the development of neural networks, especially Self Organizing Feature Maps (SOFM), there are some advantages that can be used to improve a system's performance. In this paper, we explore the application of the SOFM algorithm to generate the Vector Transform Coding (VTC) codebook and compare the result with some coding rates using the LBG algorithm.</abstract><pub>IEEE</pub><doi>10.1109/APCCAS.1998.743892</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780351460
ispartof IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242), 1998, p.603-606
issn
language eng
recordid cdi_ieee_primary_743892
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit rate
Discrete wavelet transforms
Image coding
Neural networks
Organizing
Signal processing
Signal processing algorithms
Transform coding
Vector quantization
Video coding
title Low bit rate image coding based on vector transformation with neural network approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20bit%20rate%20image%20coding%20based%20on%20vector%20transformation%20with%20neural%20network%20approach&rft.btitle=IEEE.%20APCCAS%201998.%201998%20IEEE%20Asia-Pacific%20Conference%20on%20Circuits%20and%20Systems.%20Microelectronics%20and%20Integrating%20Systems.%20Proceedings%20(Cat.%20No.98EX242)&rft.au=Suksmono,%20A.B.&rft.date=1998&rft.spage=603&rft.epage=606&rft.pages=603-606&rft.isbn=0780351460&rft.isbn_list=9780780351462&rft_id=info:doi/10.1109/APCCAS.1998.743892&rft_dat=%3Cieee_6IE%3E743892%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=743892&rfr_iscdi=true