Estimation of Lorentz Force From Dimensional Analysis: Similarity Solutions and Scaling Laws

In this paper, we consider the use of dimensional analysis for modeling electromagnetic levitation and braking problems, which are described by the Lorentz force law. Based on Maxwell's equations, to illustrate the underlying field problem, we formulate a complete mathematical model of a simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2016-08, Vol.52 (8), p.1-13
Hauptverfasser: Carlstedt, Matthias, Weise nee Porzig, Konstantin, Ziolkowski, Marek, Schmidt, Reinhard, Brauer, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 8
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 52
creator Carlstedt, Matthias
Weise nee Porzig, Konstantin
Ziolkowski, Marek
Schmidt, Reinhard
Brauer, Hartmut
description In this paper, we consider the use of dimensional analysis for modeling electromagnetic levitation and braking problems, which are described by the Lorentz force law. Based on Maxwell's equations, to illustrate the underlying field problem, we formulate a complete mathematical model of a simple academic example, where a permanent magnet is moving over an infinite plate at constant velocity. The step-by-step procedure employed for dimensional analysis is described in detail for the given problem. A dimensionless model with a reduced number of parameters is obtained, which highlights the dominant dependences, and it is invariant to the dimensional system employed. Using the dimensionless model, a concise parametric study is conducted to illustrate the advantages of the dimensionless representation for displaying complex data in an efficient manner. We provide an exhaustive study of the dependences of the Lorentz force on the dimensionless parameters to complete the analysis, and we give results for a generalized representation of the problem. Finally, scaling laws are derived and illustrated based on practical examples.
doi_str_mv 10.1109/TMAG.2016.2539927
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7429773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7429773</ieee_id><sourcerecordid>4125779911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-82090d2d3d29c786969caf2496399388b3d8941e4661efc7c42f6a3c292dc0903</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4MoOKcfQLwEvHjpzL8ljbcxtylUPGzehBDTVDLaZiYtMj-9KRsevOQlvM_vhd8DwDVGE4yRvN-8zFYTgjCfkCmVkogTMMKS4QwhLk_BCCGcZ5Jxdg4uYtymL5tiNALvi9i5RnfOt9BXsPDBtt0PXPpgLFwG38BH19g2pr2u4Sw9--jiA1y7xtU6uG4P177uh3yEui3h2ujatZ-w0N_xEpxVuo726jjH4G252MyfsuJ19TyfFZmhhHdZTpBEJSlpSaQROZdcGl0RJnlqQvP8g5Z5qmIZ59hWRhhGKq6pIZKUJkXpGNwd7u6C_-pt7FTjorF1rVvr-6hwTqecMSlwQm__oVvfh1RroBBPVpAUicIHygQfY7CV2oVkKewVRmrwrQbfavCtjr5T5uaQcdbaP14wIoWg9Bd2rHrC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806145097</pqid></control><display><type>article</type><title>Estimation of Lorentz Force From Dimensional Analysis: Similarity Solutions and Scaling Laws</title><source>IEEE Electronic Library (IEL)</source><creator>Carlstedt, Matthias ; Weise nee Porzig, Konstantin ; Ziolkowski, Marek ; Schmidt, Reinhard ; Brauer, Hartmut</creator><creatorcontrib>Carlstedt, Matthias ; Weise nee Porzig, Konstantin ; Ziolkowski, Marek ; Schmidt, Reinhard ; Brauer, Hartmut</creatorcontrib><description>In this paper, we consider the use of dimensional analysis for modeling electromagnetic levitation and braking problems, which are described by the Lorentz force law. Based on Maxwell's equations, to illustrate the underlying field problem, we formulate a complete mathematical model of a simple academic example, where a permanent magnet is moving over an infinite plate at constant velocity. The step-by-step procedure employed for dimensional analysis is described in detail for the given problem. A dimensionless model with a reduced number of parameters is obtained, which highlights the dominant dependences, and it is invariant to the dimensional system employed. Using the dimensionless model, a concise parametric study is conducted to illustrate the advantages of the dimensionless representation for displaying complex data in an efficient manner. We provide an exhaustive study of the dependences of the Lorentz force on the dimensionless parameters to complete the analysis, and we give results for a generalized representation of the problem. Finally, scaling laws are derived and illustrated based on practical examples.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2016.2539927</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Constants ; Dimensional analysis ; eddy currents ; Force ; Lorentz covariance ; Lorentz force ; Magnetic levitation ; Magnetism ; Mathematical analysis ; Mathematical model ; Mathematical models ; Maxwell's equations ; permanent magnet (PM) ; Permeability ; Representations ; Scaling laws ; similarity ; Superconducting magnets</subject><ispartof>IEEE transactions on magnetics, 2016-08, Vol.52 (8), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-82090d2d3d29c786969caf2496399388b3d8941e4661efc7c42f6a3c292dc0903</citedby><cites>FETCH-LOGICAL-c326t-82090d2d3d29c786969caf2496399388b3d8941e4661efc7c42f6a3c292dc0903</cites><orcidid>0000-0002-1598-6429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7429773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7429773$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carlstedt, Matthias</creatorcontrib><creatorcontrib>Weise nee Porzig, Konstantin</creatorcontrib><creatorcontrib>Ziolkowski, Marek</creatorcontrib><creatorcontrib>Schmidt, Reinhard</creatorcontrib><creatorcontrib>Brauer, Hartmut</creatorcontrib><title>Estimation of Lorentz Force From Dimensional Analysis: Similarity Solutions and Scaling Laws</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this paper, we consider the use of dimensional analysis for modeling electromagnetic levitation and braking problems, which are described by the Lorentz force law. Based on Maxwell's equations, to illustrate the underlying field problem, we formulate a complete mathematical model of a simple academic example, where a permanent magnet is moving over an infinite plate at constant velocity. The step-by-step procedure employed for dimensional analysis is described in detail for the given problem. A dimensionless model with a reduced number of parameters is obtained, which highlights the dominant dependences, and it is invariant to the dimensional system employed. Using the dimensionless model, a concise parametric study is conducted to illustrate the advantages of the dimensionless representation for displaying complex data in an efficient manner. We provide an exhaustive study of the dependences of the Lorentz force on the dimensionless parameters to complete the analysis, and we give results for a generalized representation of the problem. Finally, scaling laws are derived and illustrated based on practical examples.</description><subject>Constants</subject><subject>Dimensional analysis</subject><subject>eddy currents</subject><subject>Force</subject><subject>Lorentz covariance</subject><subject>Lorentz force</subject><subject>Magnetic levitation</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Maxwell's equations</subject><subject>permanent magnet (PM)</subject><subject>Permeability</subject><subject>Representations</subject><subject>Scaling laws</subject><subject>similarity</subject><subject>Superconducting magnets</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LwzAYh4MoOKcfQLwEvHjpzL8ljbcxtylUPGzehBDTVDLaZiYtMj-9KRsevOQlvM_vhd8DwDVGE4yRvN-8zFYTgjCfkCmVkogTMMKS4QwhLk_BCCGcZ5Jxdg4uYtymL5tiNALvi9i5RnfOt9BXsPDBtt0PXPpgLFwG38BH19g2pr2u4Sw9--jiA1y7xtU6uG4P177uh3yEui3h2ujatZ-w0N_xEpxVuo726jjH4G252MyfsuJ19TyfFZmhhHdZTpBEJSlpSaQROZdcGl0RJnlqQvP8g5Z5qmIZ59hWRhhGKq6pIZKUJkXpGNwd7u6C_-pt7FTjorF1rVvr-6hwTqecMSlwQm__oVvfh1RroBBPVpAUicIHygQfY7CV2oVkKewVRmrwrQbfavCtjr5T5uaQcdbaP14wIoWg9Bd2rHrC</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Carlstedt, Matthias</creator><creator>Weise nee Porzig, Konstantin</creator><creator>Ziolkowski, Marek</creator><creator>Schmidt, Reinhard</creator><creator>Brauer, Hartmut</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1598-6429</orcidid></search><sort><creationdate>201608</creationdate><title>Estimation of Lorentz Force From Dimensional Analysis: Similarity Solutions and Scaling Laws</title><author>Carlstedt, Matthias ; Weise nee Porzig, Konstantin ; Ziolkowski, Marek ; Schmidt, Reinhard ; Brauer, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-82090d2d3d29c786969caf2496399388b3d8941e4661efc7c42f6a3c292dc0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constants</topic><topic>Dimensional analysis</topic><topic>eddy currents</topic><topic>Force</topic><topic>Lorentz covariance</topic><topic>Lorentz force</topic><topic>Magnetic levitation</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Maxwell's equations</topic><topic>permanent magnet (PM)</topic><topic>Permeability</topic><topic>Representations</topic><topic>Scaling laws</topic><topic>similarity</topic><topic>Superconducting magnets</topic><toplevel>online_resources</toplevel><creatorcontrib>Carlstedt, Matthias</creatorcontrib><creatorcontrib>Weise nee Porzig, Konstantin</creatorcontrib><creatorcontrib>Ziolkowski, Marek</creatorcontrib><creatorcontrib>Schmidt, Reinhard</creatorcontrib><creatorcontrib>Brauer, Hartmut</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carlstedt, Matthias</au><au>Weise nee Porzig, Konstantin</au><au>Ziolkowski, Marek</au><au>Schmidt, Reinhard</au><au>Brauer, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Lorentz Force From Dimensional Analysis: Similarity Solutions and Scaling Laws</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2016-08</date><risdate>2016</risdate><volume>52</volume><issue>8</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this paper, we consider the use of dimensional analysis for modeling electromagnetic levitation and braking problems, which are described by the Lorentz force law. Based on Maxwell's equations, to illustrate the underlying field problem, we formulate a complete mathematical model of a simple academic example, where a permanent magnet is moving over an infinite plate at constant velocity. The step-by-step procedure employed for dimensional analysis is described in detail for the given problem. A dimensionless model with a reduced number of parameters is obtained, which highlights the dominant dependences, and it is invariant to the dimensional system employed. Using the dimensionless model, a concise parametric study is conducted to illustrate the advantages of the dimensionless representation for displaying complex data in an efficient manner. We provide an exhaustive study of the dependences of the Lorentz force on the dimensionless parameters to complete the analysis, and we give results for a generalized representation of the problem. Finally, scaling laws are derived and illustrated based on practical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2016.2539927</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1598-6429</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2016-08, Vol.52 (8), p.1-13
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_7429773
source IEEE Electronic Library (IEL)
subjects Constants
Dimensional analysis
eddy currents
Force
Lorentz covariance
Lorentz force
Magnetic levitation
Magnetism
Mathematical analysis
Mathematical model
Mathematical models
Maxwell's equations
permanent magnet (PM)
Permeability
Representations
Scaling laws
similarity
Superconducting magnets
title Estimation of Lorentz Force From Dimensional Analysis: Similarity Solutions and Scaling Laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Lorentz%20Force%20From%20Dimensional%20Analysis:%20Similarity%20Solutions%20and%20Scaling%20Laws&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Carlstedt,%20Matthias&rft.date=2016-08&rft.volume=52&rft.issue=8&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2016.2539927&rft_dat=%3Cproquest_RIE%3E4125779911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806145097&rft_id=info:pmid/&rft_ieee_id=7429773&rfr_iscdi=true