Multilevel-Cell Phase-Change Memory: A Viable Technology
In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology...
Gespeichert in:
Veröffentlicht in: | IEEE journal on emerging and selected topics in circuits and systems 2016-03, Vol.6 (1), p.87-100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | IEEE journal on emerging and selected topics in circuits and systems |
container_volume | 6 |
creator | Athmanathan, Aravinthan Stanisavljevic, Milos Papandreou, Nikolaos Pozidis, Haralampos Eleftheriou, Evangelos |
description | In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever. |
doi_str_mv | 10.1109/JETCAS.2016.2528598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7428956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428956</ieee_id><sourcerecordid>1825517823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</originalsourceid><addsrcrecordid>eNpdkE1rwkAQhpfSQsX6C7wEeukldncn-5HeJPQTpYXaXpd1M9FITGzWFPz3XYl46FxmDs87vDyEjBmdMEbT-7fHRTb9nHDK5IQLrkWqL8iAMyFjACkuz7dQ12Tk_YaGEZLJJBkQPe-qfVnhL1ZxhlUVfaytxzhb23qF0Ry3TXt4iKbRd2mXFUYLdOu6qZrV4YZcFbbyODrtIfl6CkVe4tn782s2ncUOgO5jQCFpgiLXlMpEs6VjyumCAQBHCcwKpbAQihWQJy5XzhaCA-ZYKK2ESmFI7vq_u7b56dDvzbb0LjS1NTadN0xzIZjSHAJ6-w_dNF1bh3YmADKFVEoZKOgp1zbet1iYXVtubXswjJqjUNMLNUeh5iQ0pMZ9qkTEc0IlXKdCwh8QXG71</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786939666</pqid></control><display><type>article</type><title>Multilevel-Cell Phase-Change Memory: A Viable Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Athmanathan, Aravinthan ; Stanisavljevic, Milos ; Papandreou, Nikolaos ; Pozidis, Haralampos ; Eleftheriou, Evangelos</creator><creatorcontrib>Athmanathan, Aravinthan ; Stanisavljevic, Milos ; Papandreou, Nikolaos ; Pozidis, Haralampos ; Eleftheriou, Evangelos</creatorcontrib><description>In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.</description><identifier>ISSN: 2156-3357</identifier><identifier>EISSN: 2156-3365</identifier><identifier>DOI: 10.1109/JETCAS.2016.2528598</identifier><identifier>CODEN: IJESLY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arrays ; Circuits ; Collection ; Conductivity ; Durability ; Endurance ; Feasibility ; Flash memory (computers) ; Memory ; nonvolatile memory ; Phase change materials ; Phase change memory ; Programming ; Reliability ; Resistance ; semiconductor device reliability ; Storage capacity</subject><ispartof>IEEE journal on emerging and selected topics in circuits and systems, 2016-03, Vol.6 (1), p.87-100</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</citedby><cites>FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Athmanathan, Aravinthan</creatorcontrib><creatorcontrib>Stanisavljevic, Milos</creatorcontrib><creatorcontrib>Papandreou, Nikolaos</creatorcontrib><creatorcontrib>Pozidis, Haralampos</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><title>Multilevel-Cell Phase-Change Memory: A Viable Technology</title><title>IEEE journal on emerging and selected topics in circuits and systems</title><addtitle>JETCAS</addtitle><description>In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.</description><subject>Arrays</subject><subject>Circuits</subject><subject>Collection</subject><subject>Conductivity</subject><subject>Durability</subject><subject>Endurance</subject><subject>Feasibility</subject><subject>Flash memory (computers)</subject><subject>Memory</subject><subject>nonvolatile memory</subject><subject>Phase change materials</subject><subject>Phase change memory</subject><subject>Programming</subject><subject>Reliability</subject><subject>Resistance</subject><subject>semiconductor device reliability</subject><subject>Storage capacity</subject><issn>2156-3357</issn><issn>2156-3365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rwkAQhpfSQsX6C7wEeukldncn-5HeJPQTpYXaXpd1M9FITGzWFPz3XYl46FxmDs87vDyEjBmdMEbT-7fHRTb9nHDK5IQLrkWqL8iAMyFjACkuz7dQ12Tk_YaGEZLJJBkQPe-qfVnhL1ZxhlUVfaytxzhb23qF0Ry3TXt4iKbRd2mXFUYLdOu6qZrV4YZcFbbyODrtIfl6CkVe4tn782s2ncUOgO5jQCFpgiLXlMpEs6VjyumCAQBHCcwKpbAQihWQJy5XzhaCA-ZYKK2ESmFI7vq_u7b56dDvzbb0LjS1NTadN0xzIZjSHAJ6-w_dNF1bh3YmADKFVEoZKOgp1zbet1iYXVtubXswjJqjUNMLNUeh5iQ0pMZ9qkTEc0IlXKdCwh8QXG71</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Athmanathan, Aravinthan</creator><creator>Stanisavljevic, Milos</creator><creator>Papandreou, Nikolaos</creator><creator>Pozidis, Haralampos</creator><creator>Eleftheriou, Evangelos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160301</creationdate><title>Multilevel-Cell Phase-Change Memory: A Viable Technology</title><author>Athmanathan, Aravinthan ; Stanisavljevic, Milos ; Papandreou, Nikolaos ; Pozidis, Haralampos ; Eleftheriou, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrays</topic><topic>Circuits</topic><topic>Collection</topic><topic>Conductivity</topic><topic>Durability</topic><topic>Endurance</topic><topic>Feasibility</topic><topic>Flash memory (computers)</topic><topic>Memory</topic><topic>nonvolatile memory</topic><topic>Phase change materials</topic><topic>Phase change memory</topic><topic>Programming</topic><topic>Reliability</topic><topic>Resistance</topic><topic>semiconductor device reliability</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athmanathan, Aravinthan</creatorcontrib><creatorcontrib>Stanisavljevic, Milos</creatorcontrib><creatorcontrib>Papandreou, Nikolaos</creatorcontrib><creatorcontrib>Pozidis, Haralampos</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Athmanathan, Aravinthan</au><au>Stanisavljevic, Milos</au><au>Papandreou, Nikolaos</au><au>Pozidis, Haralampos</au><au>Eleftheriou, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel-Cell Phase-Change Memory: A Viable Technology</atitle><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle><stitle>JETCAS</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>87</spage><epage>100</epage><pages>87-100</pages><issn>2156-3357</issn><eissn>2156-3365</eissn><coden>IJESLY</coden><abstract>In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JETCAS.2016.2528598</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3357 |
ispartof | IEEE journal on emerging and selected topics in circuits and systems, 2016-03, Vol.6 (1), p.87-100 |
issn | 2156-3357 2156-3365 |
language | eng |
recordid | cdi_ieee_primary_7428956 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Circuits Collection Conductivity Durability Endurance Feasibility Flash memory (computers) Memory nonvolatile memory Phase change materials Phase change memory Programming Reliability Resistance semiconductor device reliability Storage capacity |
title | Multilevel-Cell Phase-Change Memory: A Viable Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel-Cell%20Phase-Change%20Memory:%20A%20Viable%20Technology&rft.jtitle=IEEE%20journal%20on%20emerging%20and%20selected%20topics%20in%20circuits%20and%20systems&rft.au=Athmanathan,%20Aravinthan&rft.date=2016-03-01&rft.volume=6&rft.issue=1&rft.spage=87&rft.epage=100&rft.pages=87-100&rft.issn=2156-3357&rft.eissn=2156-3365&rft.coden=IJESLY&rft_id=info:doi/10.1109/JETCAS.2016.2528598&rft_dat=%3Cproquest_RIE%3E1825517823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786939666&rft_id=info:pmid/&rft_ieee_id=7428956&rfr_iscdi=true |