Multilevel-Cell Phase-Change Memory: A Viable Technology

In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on emerging and selected topics in circuits and systems 2016-03, Vol.6 (1), p.87-100
Hauptverfasser: Athmanathan, Aravinthan, Stanisavljevic, Milos, Papandreou, Nikolaos, Pozidis, Haralampos, Eleftheriou, Evangelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 87
container_title IEEE journal on emerging and selected topics in circuits and systems
container_volume 6
creator Athmanathan, Aravinthan
Stanisavljevic, Milos
Papandreou, Nikolaos
Pozidis, Haralampos
Eleftheriou, Evangelos
description In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.
doi_str_mv 10.1109/JETCAS.2016.2528598
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7428956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428956</ieee_id><sourcerecordid>1825517823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</originalsourceid><addsrcrecordid>eNpdkE1rwkAQhpfSQsX6C7wEeukldncn-5HeJPQTpYXaXpd1M9FITGzWFPz3XYl46FxmDs87vDyEjBmdMEbT-7fHRTb9nHDK5IQLrkWqL8iAMyFjACkuz7dQ12Tk_YaGEZLJJBkQPe-qfVnhL1ZxhlUVfaytxzhb23qF0Ry3TXt4iKbRd2mXFUYLdOu6qZrV4YZcFbbyODrtIfl6CkVe4tn782s2ncUOgO5jQCFpgiLXlMpEs6VjyumCAQBHCcwKpbAQihWQJy5XzhaCA-ZYKK2ESmFI7vq_u7b56dDvzbb0LjS1NTadN0xzIZjSHAJ6-w_dNF1bh3YmADKFVEoZKOgp1zbet1iYXVtubXswjJqjUNMLNUeh5iQ0pMZ9qkTEc0IlXKdCwh8QXG71</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786939666</pqid></control><display><type>article</type><title>Multilevel-Cell Phase-Change Memory: A Viable Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Athmanathan, Aravinthan ; Stanisavljevic, Milos ; Papandreou, Nikolaos ; Pozidis, Haralampos ; Eleftheriou, Evangelos</creator><creatorcontrib>Athmanathan, Aravinthan ; Stanisavljevic, Milos ; Papandreou, Nikolaos ; Pozidis, Haralampos ; Eleftheriou, Evangelos</creatorcontrib><description>In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.</description><identifier>ISSN: 2156-3357</identifier><identifier>EISSN: 2156-3365</identifier><identifier>DOI: 10.1109/JETCAS.2016.2528598</identifier><identifier>CODEN: IJESLY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Arrays ; Circuits ; Collection ; Conductivity ; Durability ; Endurance ; Feasibility ; Flash memory (computers) ; Memory ; nonvolatile memory ; Phase change materials ; Phase change memory ; Programming ; Reliability ; Resistance ; semiconductor device reliability ; Storage capacity</subject><ispartof>IEEE journal on emerging and selected topics in circuits and systems, 2016-03, Vol.6 (1), p.87-100</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</citedby><cites>FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Athmanathan, Aravinthan</creatorcontrib><creatorcontrib>Stanisavljevic, Milos</creatorcontrib><creatorcontrib>Papandreou, Nikolaos</creatorcontrib><creatorcontrib>Pozidis, Haralampos</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><title>Multilevel-Cell Phase-Change Memory: A Viable Technology</title><title>IEEE journal on emerging and selected topics in circuits and systems</title><addtitle>JETCAS</addtitle><description>In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.</description><subject>Arrays</subject><subject>Circuits</subject><subject>Collection</subject><subject>Conductivity</subject><subject>Durability</subject><subject>Endurance</subject><subject>Feasibility</subject><subject>Flash memory (computers)</subject><subject>Memory</subject><subject>nonvolatile memory</subject><subject>Phase change materials</subject><subject>Phase change memory</subject><subject>Programming</subject><subject>Reliability</subject><subject>Resistance</subject><subject>semiconductor device reliability</subject><subject>Storage capacity</subject><issn>2156-3357</issn><issn>2156-3365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rwkAQhpfSQsX6C7wEeukldncn-5HeJPQTpYXaXpd1M9FITGzWFPz3XYl46FxmDs87vDyEjBmdMEbT-7fHRTb9nHDK5IQLrkWqL8iAMyFjACkuz7dQ12Tk_YaGEZLJJBkQPe-qfVnhL1ZxhlUVfaytxzhb23qF0Ry3TXt4iKbRd2mXFUYLdOu6qZrV4YZcFbbyODrtIfl6CkVe4tn782s2ncUOgO5jQCFpgiLXlMpEs6VjyumCAQBHCcwKpbAQihWQJy5XzhaCA-ZYKK2ESmFI7vq_u7b56dDvzbb0LjS1NTadN0xzIZjSHAJ6-w_dNF1bh3YmADKFVEoZKOgp1zbet1iYXVtubXswjJqjUNMLNUeh5iQ0pMZ9qkTEc0IlXKdCwh8QXG71</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Athmanathan, Aravinthan</creator><creator>Stanisavljevic, Milos</creator><creator>Papandreou, Nikolaos</creator><creator>Pozidis, Haralampos</creator><creator>Eleftheriou, Evangelos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160301</creationdate><title>Multilevel-Cell Phase-Change Memory: A Viable Technology</title><author>Athmanathan, Aravinthan ; Stanisavljevic, Milos ; Papandreou, Nikolaos ; Pozidis, Haralampos ; Eleftheriou, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-3e5604e5d8006481bc17c8f13332e631a577ef571f3d4cd7caf523edef7875793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrays</topic><topic>Circuits</topic><topic>Collection</topic><topic>Conductivity</topic><topic>Durability</topic><topic>Endurance</topic><topic>Feasibility</topic><topic>Flash memory (computers)</topic><topic>Memory</topic><topic>nonvolatile memory</topic><topic>Phase change materials</topic><topic>Phase change memory</topic><topic>Programming</topic><topic>Reliability</topic><topic>Resistance</topic><topic>semiconductor device reliability</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athmanathan, Aravinthan</creatorcontrib><creatorcontrib>Stanisavljevic, Milos</creatorcontrib><creatorcontrib>Papandreou, Nikolaos</creatorcontrib><creatorcontrib>Pozidis, Haralampos</creatorcontrib><creatorcontrib>Eleftheriou, Evangelos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Athmanathan, Aravinthan</au><au>Stanisavljevic, Milos</au><au>Papandreou, Nikolaos</au><au>Pozidis, Haralampos</au><au>Eleftheriou, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel-Cell Phase-Change Memory: A Viable Technology</atitle><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle><stitle>JETCAS</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>87</spage><epage>100</epage><pages>87-100</pages><issn>2156-3357</issn><eissn>2156-3365</eissn><coden>IJESLY</coden><abstract>In order for any non-volatile memory (NVM) to be considered a viable technology, its reliability should be verified at the array level. In particular, properties such as high endurance and at least moderate data retention are considered essential. Phase-change memory (PCM) is one such NVM technology that possesses highly desirable features and has reached an advanced level of maturity through intensive research and development in the past decade. Multilevel-cell (MLC) capability, i.e., storage of two bits per cell or more, is not only desirable as it reduces the effective cost per storage capacity, but a necessary feature for the competitiveness of PCM against the incumbent technologies, namely DRAM and Flash memory. MLC storage in PCM, however, is seriously challenged by phenomena such as cell variability, intrinsic noise, and resistance drift. We present a collection of advanced circuit-level solutions to the above challenges, and demonstrate the viability of MLC PCM at the array level. Notably, we demonstrate reliable storage and moderate data retention of 2 bits/cell PCM, on a 64 k cell array, at elevated temperatures and after 1 million SET/RESET endurance cycles. Under similar operating conditions, we also show feasibility of 3 bits/cell PCM, for the first time ever.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JETCAS.2016.2528598</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3357
ispartof IEEE journal on emerging and selected topics in circuits and systems, 2016-03, Vol.6 (1), p.87-100
issn 2156-3357
2156-3365
language eng
recordid cdi_ieee_primary_7428956
source IEEE Electronic Library (IEL)
subjects Arrays
Circuits
Collection
Conductivity
Durability
Endurance
Feasibility
Flash memory (computers)
Memory
nonvolatile memory
Phase change materials
Phase change memory
Programming
Reliability
Resistance
semiconductor device reliability
Storage capacity
title Multilevel-Cell Phase-Change Memory: A Viable Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel-Cell%20Phase-Change%20Memory:%20A%20Viable%20Technology&rft.jtitle=IEEE%20journal%20on%20emerging%20and%20selected%20topics%20in%20circuits%20and%20systems&rft.au=Athmanathan,%20Aravinthan&rft.date=2016-03-01&rft.volume=6&rft.issue=1&rft.spage=87&rft.epage=100&rft.pages=87-100&rft.issn=2156-3357&rft.eissn=2156-3365&rft.coden=IJESLY&rft_id=info:doi/10.1109/JETCAS.2016.2528598&rft_dat=%3Cproquest_RIE%3E1825517823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786939666&rft_id=info:pmid/&rft_ieee_id=7428956&rfr_iscdi=true