A Distributed Networked Approach for Fault Detection of Large-Scale Systems

Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2017-01, Vol.62 (1), p.18-33
Hauptverfasser: Boem, Francesca, Ferrari, Riccardo M. G., Keliris, Christodoulos, Parisini, Thomas, Polycarpou, Marios M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 18
container_title IEEE transactions on automatic control
container_volume 62
creator Boem, Francesca
Ferrari, Riccardo M. G.
Keliris, Christodoulos
Parisini, Thomas
Polycarpou, Marios M.
description Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.
doi_str_mv 10.1109/TAC.2016.2539326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7428855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428855</ieee_id><sourcerecordid>1855340736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJcWmtioseWs8hm010a9vUJIv035vS4mlm4HlnhgeAW4wmGCP5sKynE4IwnxBGJSX8DIwwY6IgjNBzMEIIi0ISwS_BVYyrPPKyxCPwWsNZH1Po2yHZDr7Z9OvDd-7q3S54bb6g8wHO9bBOcGaTNan3W-gdbHT4tMXC6LWFi31MdhOvwYXT62hvTnUMPuaPy-lz0bw_vUzrpjCU0lRUmneiNQh1skTIEc4cqUQntJZaM9O2UjDWidJxnhnjSl4JXVHUOimFQS0dg_vj3vzhz2BjUis_hG0-qXCO0hJVlGcKHSkTfIzBOrUL_UaHvcJIHZSprEwdlKmTshy5O0Z6a-0_XpVEHNb-AVZLZo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855340736</pqid></control><display><type>article</type><title>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</title><source>IEEE Xplore</source><creator>Boem, Francesca ; Ferrari, Riccardo M. G. ; Keliris, Christodoulos ; Parisini, Thomas ; Polycarpou, Marios M.</creator><creatorcontrib>Boem, Francesca ; Ferrari, Riccardo M. G. ; Keliris, Christodoulos ; Parisini, Thomas ; Polycarpou, Marios M.</creatorcontrib><description>Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2539326</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Delays ; Distributed systems ; Fault detection ; Fault diagnosis ; Large-scale systems ; Mathematical model ; Monitoring ; networked control systems ; Noise measurement ; Subsystems ; Synchronism ; Virtual sensors</subject><ispartof>IEEE transactions on automatic control, 2017-01, Vol.62 (1), p.18-33</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</citedby><cites>FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boem, Francesca</creatorcontrib><creatorcontrib>Ferrari, Riccardo M. G.</creatorcontrib><creatorcontrib>Keliris, Christodoulos</creatorcontrib><creatorcontrib>Parisini, Thomas</creatorcontrib><creatorcontrib>Polycarpou, Marios M.</creatorcontrib><title>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.</description><subject>Algorithms</subject><subject>Delays</subject><subject>Distributed systems</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Large-scale systems</subject><subject>Mathematical model</subject><subject>Monitoring</subject><subject>networked control systems</subject><subject>Noise measurement</subject><subject>Subsystems</subject><subject>Synchronism</subject><subject>Virtual sensors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJcWmtioseWs8hm010a9vUJIv035vS4mlm4HlnhgeAW4wmGCP5sKynE4IwnxBGJSX8DIwwY6IgjNBzMEIIi0ISwS_BVYyrPPKyxCPwWsNZH1Po2yHZDr7Z9OvDd-7q3S54bb6g8wHO9bBOcGaTNan3W-gdbHT4tMXC6LWFi31MdhOvwYXT62hvTnUMPuaPy-lz0bw_vUzrpjCU0lRUmneiNQh1skTIEc4cqUQntJZaM9O2UjDWidJxnhnjSl4JXVHUOimFQS0dg_vj3vzhz2BjUis_hG0-qXCO0hJVlGcKHSkTfIzBOrUL_UaHvcJIHZSprEwdlKmTshy5O0Z6a-0_XpVEHNb-AVZLZo0</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Boem, Francesca</creator><creator>Ferrari, Riccardo M. G.</creator><creator>Keliris, Christodoulos</creator><creator>Parisini, Thomas</creator><creator>Polycarpou, Marios M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201701</creationdate><title>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</title><author>Boem, Francesca ; Ferrari, Riccardo M. G. ; Keliris, Christodoulos ; Parisini, Thomas ; Polycarpou, Marios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Delays</topic><topic>Distributed systems</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Large-scale systems</topic><topic>Mathematical model</topic><topic>Monitoring</topic><topic>networked control systems</topic><topic>Noise measurement</topic><topic>Subsystems</topic><topic>Synchronism</topic><topic>Virtual sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boem, Francesca</creatorcontrib><creatorcontrib>Ferrari, Riccardo M. G.</creatorcontrib><creatorcontrib>Keliris, Christodoulos</creatorcontrib><creatorcontrib>Parisini, Thomas</creatorcontrib><creatorcontrib>Polycarpou, Marios M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boem, Francesca</au><au>Ferrari, Riccardo M. G.</au><au>Keliris, Christodoulos</au><au>Parisini, Thomas</au><au>Polycarpou, Marios M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-01</date><risdate>2017</risdate><volume>62</volume><issue>1</issue><spage>18</spage><epage>33</epage><pages>18-33</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2539326</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2017-01, Vol.62 (1), p.18-33
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_7428855
source IEEE Xplore
subjects Algorithms
Delays
Distributed systems
Fault detection
Fault diagnosis
Large-scale systems
Mathematical model
Monitoring
networked control systems
Noise measurement
Subsystems
Synchronism
Virtual sensors
title A Distributed Networked Approach for Fault Detection of Large-Scale Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Networked%20Approach%20for%20Fault%20Detection%20of%20Large-Scale%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Boem,%20Francesca&rft.date=2017-01&rft.volume=62&rft.issue=1&rft.spage=18&rft.epage=33&rft.pages=18-33&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2539326&rft_dat=%3Cproquest_RIE%3E1855340736%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855340736&rft_id=info:pmid/&rft_ieee_id=7428855&rfr_iscdi=true