A Distributed Networked Approach for Fault Detection of Large-Scale Systems
Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filt...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-01, Vol.62 (1), p.18-33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | IEEE transactions on automatic control |
container_volume | 62 |
creator | Boem, Francesca Ferrari, Riccardo M. G. Keliris, Christodoulos Parisini, Thomas Polycarpou, Marios M. |
description | Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique. |
doi_str_mv | 10.1109/TAC.2016.2539326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7428855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428855</ieee_id><sourcerecordid>1855340736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJcWmtioseWs8hm010a9vUJIv035vS4mlm4HlnhgeAW4wmGCP5sKynE4IwnxBGJSX8DIwwY6IgjNBzMEIIi0ISwS_BVYyrPPKyxCPwWsNZH1Po2yHZDr7Z9OvDd-7q3S54bb6g8wHO9bBOcGaTNan3W-gdbHT4tMXC6LWFi31MdhOvwYXT62hvTnUMPuaPy-lz0bw_vUzrpjCU0lRUmneiNQh1skTIEc4cqUQntJZaM9O2UjDWidJxnhnjSl4JXVHUOimFQS0dg_vj3vzhz2BjUis_hG0-qXCO0hJVlGcKHSkTfIzBOrUL_UaHvcJIHZSprEwdlKmTshy5O0Z6a-0_XpVEHNb-AVZLZo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855340736</pqid></control><display><type>article</type><title>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</title><source>IEEE Xplore</source><creator>Boem, Francesca ; Ferrari, Riccardo M. G. ; Keliris, Christodoulos ; Parisini, Thomas ; Polycarpou, Marios M.</creator><creatorcontrib>Boem, Francesca ; Ferrari, Riccardo M. G. ; Keliris, Christodoulos ; Parisini, Thomas ; Polycarpou, Marios M.</creatorcontrib><description>Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2539326</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Delays ; Distributed systems ; Fault detection ; Fault diagnosis ; Large-scale systems ; Mathematical model ; Monitoring ; networked control systems ; Noise measurement ; Subsystems ; Synchronism ; Virtual sensors</subject><ispartof>IEEE transactions on automatic control, 2017-01, Vol.62 (1), p.18-33</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</citedby><cites>FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boem, Francesca</creatorcontrib><creatorcontrib>Ferrari, Riccardo M. G.</creatorcontrib><creatorcontrib>Keliris, Christodoulos</creatorcontrib><creatorcontrib>Parisini, Thomas</creatorcontrib><creatorcontrib>Polycarpou, Marios M.</creatorcontrib><title>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.</description><subject>Algorithms</subject><subject>Delays</subject><subject>Distributed systems</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Large-scale systems</subject><subject>Mathematical model</subject><subject>Monitoring</subject><subject>networked control systems</subject><subject>Noise measurement</subject><subject>Subsystems</subject><subject>Synchronism</subject><subject>Virtual sensors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJcWmtioseWs8hm010a9vUJIv035vS4mlm4HlnhgeAW4wmGCP5sKynE4IwnxBGJSX8DIwwY6IgjNBzMEIIi0ISwS_BVYyrPPKyxCPwWsNZH1Po2yHZDr7Z9OvDd-7q3S54bb6g8wHO9bBOcGaTNan3W-gdbHT4tMXC6LWFi31MdhOvwYXT62hvTnUMPuaPy-lz0bw_vUzrpjCU0lRUmneiNQh1skTIEc4cqUQntJZaM9O2UjDWidJxnhnjSl4JXVHUOimFQS0dg_vj3vzhz2BjUis_hG0-qXCO0hJVlGcKHSkTfIzBOrUL_UaHvcJIHZSprEwdlKmTshy5O0Z6a-0_XpVEHNb-AVZLZo0</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Boem, Francesca</creator><creator>Ferrari, Riccardo M. G.</creator><creator>Keliris, Christodoulos</creator><creator>Parisini, Thomas</creator><creator>Polycarpou, Marios M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201701</creationdate><title>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</title><author>Boem, Francesca ; Ferrari, Riccardo M. G. ; Keliris, Christodoulos ; Parisini, Thomas ; Polycarpou, Marios M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7a6d8bc00d9400f265f278d8aa9aa5cbb9855d84f6600dcf4678a730bf998c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Delays</topic><topic>Distributed systems</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Large-scale systems</topic><topic>Mathematical model</topic><topic>Monitoring</topic><topic>networked control systems</topic><topic>Noise measurement</topic><topic>Subsystems</topic><topic>Synchronism</topic><topic>Virtual sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boem, Francesca</creatorcontrib><creatorcontrib>Ferrari, Riccardo M. G.</creatorcontrib><creatorcontrib>Keliris, Christodoulos</creatorcontrib><creatorcontrib>Parisini, Thomas</creatorcontrib><creatorcontrib>Polycarpou, Marios M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boem, Francesca</au><au>Ferrari, Riccardo M. G.</au><au>Keliris, Christodoulos</au><au>Parisini, Thomas</au><au>Polycarpou, Marios M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Networked Approach for Fault Detection of Large-Scale Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-01</date><risdate>2017</risdate><volume>62</volume><issue>1</issue><spage>18</spage><epage>33</epage><pages>18-33</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Networked systems present some key new challenges in the development of fault-diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multirate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based resynchronization algorithm and a delay compensation strategy for distributed fault-diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with time-varying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived, and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2539326</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2017-01, Vol.62 (1), p.18-33 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_7428855 |
source | IEEE Xplore |
subjects | Algorithms Delays Distributed systems Fault detection Fault diagnosis Large-scale systems Mathematical model Monitoring networked control systems Noise measurement Subsystems Synchronism Virtual sensors |
title | A Distributed Networked Approach for Fault Detection of Large-Scale Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Networked%20Approach%20for%20Fault%20Detection%20of%20Large-Scale%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Boem,%20Francesca&rft.date=2017-01&rft.volume=62&rft.issue=1&rft.spage=18&rft.epage=33&rft.pages=18-33&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2539326&rft_dat=%3Cproquest_RIE%3E1855340736%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855340736&rft_id=info:pmid/&rft_ieee_id=7428855&rfr_iscdi=true |