SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning

In this paper, a novel synthetic aperture radar (SAR) ground moving target imaging (GMTIm) algorithm is presented within a parametric and dynamic sparse Bayesian learning (SBL) framework. A new time-frequency representation, which is known as Lv's distribution (LVD), is employed on the moving t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2016-04, Vol.54 (4), p.2254-2267
Hauptverfasser: Yang, Lei, Zhao, Lifan, Bi, Guoan, Zhang, Liren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2267
container_issue 4
container_start_page 2254
container_title IEEE transactions on geoscience and remote sensing
container_volume 54
creator Yang, Lei
Zhao, Lifan
Bi, Guoan
Zhang, Liren
description In this paper, a novel synthetic aperture radar (SAR) ground moving target imaging (GMTIm) algorithm is presented within a parametric and dynamic sparse Bayesian learning (SBL) framework. A new time-frequency representation, which is known as Lv's distribution (LVD), is employed on the moving targets to determine the parametric dictionary used in the SBL framework. To combat the inherent accuracy limitations of the LVD and extrinsic perturbation errors, a dynamical refinement process is further developed and incorporated into the SBL framework to obtain highly focused SAR image of multiple moving targets. An emerging inference technique, which is known as variational Bayesian expectation-maximization, is applied to achieve an efficient Bayesian inference for the focused SAR moving target image. A remarkable advantage of the proposed algorithm is to provide a fully posterior distribution (Bayesian inference) for the SAR moving target image, rather than a poor point estimate used in conventional methods. Because of utilizing high-order statistical information, the error propagation problem is desirably ameliorated in an iterative manner. The perturbations, known as the multiplicative phase error and additive clutter and noise, are both well adjusted for further improving the image quality. Experimental results by using simulated spotlight-SAR data and real Gotcha data have demonstrated the superiority of the proposed algorithm over other reported ones.
doi_str_mv 10.1109/TGRS.2015.2498158
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7422105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7422105</ieee_id><sourcerecordid>4045663691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a3b3848256b13750cd1a820b917246e8e596c233a595264004f6777b5aad2e473</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRsFYfQLxZ8Dp1z4fLeqqFitLW62WSbGNKk9TdVOjbu6XFq5mB7_8HPoRuKRlRSuzDcjJfjBihcsSENVSaMzSgUpqMKCHO0YBQqzJmLLtEVzGuCaFCUj1AxWI8x5PQ7doSv3e_dVvhJYTK93jaQHU4x5uqC3X_3eBHiL7EXYs_IUDj-1AXGFLued9Ck_bFFkL0Cdv7WEOLZx5Cmyqu0cUKNtHfnOYQfb2-LJ_estnHZPo0nmUFs7zPgOfcCMOkyinXkhQlBcNIbqlmQnnjpVUF4xyklUwJQsRKaa1zCVAyLzQfovtj7zZ0Pzsfe7fudqFNLx3VRlmRalWi6JEqQhdj8Cu3DXUDYe8ocQeX7uDSHVy6k8uUuTtmau_9P68FY5RI_gfGBG43</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786941376</pqid></control><display><type>article</type><title>SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning</title><source>IEEE</source><creator>Yang, Lei ; Zhao, Lifan ; Bi, Guoan ; Zhang, Liren</creator><creatorcontrib>Yang, Lei ; Zhao, Lifan ; Bi, Guoan ; Zhang, Liren</creatorcontrib><description>In this paper, a novel synthetic aperture radar (SAR) ground moving target imaging (GMTIm) algorithm is presented within a parametric and dynamic sparse Bayesian learning (SBL) framework. A new time-frequency representation, which is known as Lv's distribution (LVD), is employed on the moving targets to determine the parametric dictionary used in the SBL framework. To combat the inherent accuracy limitations of the LVD and extrinsic perturbation errors, a dynamical refinement process is further developed and incorporated into the SBL framework to obtain highly focused SAR image of multiple moving targets. An emerging inference technique, which is known as variational Bayesian expectation-maximization, is applied to achieve an efficient Bayesian inference for the focused SAR moving target image. A remarkable advantage of the proposed algorithm is to provide a fully posterior distribution (Bayesian inference) for the SAR moving target image, rather than a poor point estimate used in conventional methods. Because of utilizing high-order statistical information, the error propagation problem is desirably ameliorated in an iterative manner. The perturbations, known as the multiplicative phase error and additive clutter and noise, are both well adjusted for further improving the image quality. Experimental results by using simulated spotlight-SAR data and real Gotcha data have demonstrated the superiority of the proposed algorithm over other reported ones.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2498158</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Ground moving target imaging (GMTIm) ; Heuristic algorithms ; Imaging ; Lv's distribution (LVD) ; parametric and dynamic sparse Bayesian learning (Para-Dyna-SBL) ; Radar imaging ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2016-04, Vol.54 (4), p.2254-2267</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a3b3848256b13750cd1a820b917246e8e596c233a595264004f6777b5aad2e473</citedby><cites>FETCH-LOGICAL-c293t-a3b3848256b13750cd1a820b917246e8e596c233a595264004f6777b5aad2e473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7422105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7422105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Bi, Guoan</creatorcontrib><creatorcontrib>Zhang, Liren</creatorcontrib><title>SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, a novel synthetic aperture radar (SAR) ground moving target imaging (GMTIm) algorithm is presented within a parametric and dynamic sparse Bayesian learning (SBL) framework. A new time-frequency representation, which is known as Lv's distribution (LVD), is employed on the moving targets to determine the parametric dictionary used in the SBL framework. To combat the inherent accuracy limitations of the LVD and extrinsic perturbation errors, a dynamical refinement process is further developed and incorporated into the SBL framework to obtain highly focused SAR image of multiple moving targets. An emerging inference technique, which is known as variational Bayesian expectation-maximization, is applied to achieve an efficient Bayesian inference for the focused SAR moving target image. A remarkable advantage of the proposed algorithm is to provide a fully posterior distribution (Bayesian inference) for the SAR moving target image, rather than a poor point estimate used in conventional methods. Because of utilizing high-order statistical information, the error propagation problem is desirably ameliorated in an iterative manner. The perturbations, known as the multiplicative phase error and additive clutter and noise, are both well adjusted for further improving the image quality. Experimental results by using simulated spotlight-SAR data and real Gotcha data have demonstrated the superiority of the proposed algorithm over other reported ones.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Ground moving target imaging (GMTIm)</subject><subject>Heuristic algorithms</subject><subject>Imaging</subject><subject>Lv's distribution (LVD)</subject><subject>parametric and dynamic sparse Bayesian learning (Para-Dyna-SBL)</subject><subject>Radar imaging</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AQhhdRsFYfQLxZ8Dp1z4fLeqqFitLW62WSbGNKk9TdVOjbu6XFq5mB7_8HPoRuKRlRSuzDcjJfjBihcsSENVSaMzSgUpqMKCHO0YBQqzJmLLtEVzGuCaFCUj1AxWI8x5PQ7doSv3e_dVvhJYTK93jaQHU4x5uqC3X_3eBHiL7EXYs_IUDj-1AXGFLued9Ck_bFFkL0Cdv7WEOLZx5Cmyqu0cUKNtHfnOYQfb2-LJ_estnHZPo0nmUFs7zPgOfcCMOkyinXkhQlBcNIbqlmQnnjpVUF4xyklUwJQsRKaa1zCVAyLzQfovtj7zZ0Pzsfe7fudqFNLx3VRlmRalWi6JEqQhdj8Cu3DXUDYe8ocQeX7uDSHVy6k8uUuTtmau_9P68FY5RI_gfGBG43</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Yang, Lei</creator><creator>Zhao, Lifan</creator><creator>Bi, Guoan</creator><creator>Zhang, Liren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201604</creationdate><title>SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning</title><author>Yang, Lei ; Zhao, Lifan ; Bi, Guoan ; Zhang, Liren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a3b3848256b13750cd1a820b917246e8e596c233a595264004f6777b5aad2e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Ground moving target imaging (GMTIm)</topic><topic>Heuristic algorithms</topic><topic>Imaging</topic><topic>Lv's distribution (LVD)</topic><topic>parametric and dynamic sparse Bayesian learning (Para-Dyna-SBL)</topic><topic>Radar imaging</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Bi, Guoan</creatorcontrib><creatorcontrib>Zhang, Liren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Lei</au><au>Zhao, Lifan</au><au>Bi, Guoan</au><au>Zhang, Liren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2016-04</date><risdate>2016</risdate><volume>54</volume><issue>4</issue><spage>2254</spage><epage>2267</epage><pages>2254-2267</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, a novel synthetic aperture radar (SAR) ground moving target imaging (GMTIm) algorithm is presented within a parametric and dynamic sparse Bayesian learning (SBL) framework. A new time-frequency representation, which is known as Lv's distribution (LVD), is employed on the moving targets to determine the parametric dictionary used in the SBL framework. To combat the inherent accuracy limitations of the LVD and extrinsic perturbation errors, a dynamical refinement process is further developed and incorporated into the SBL framework to obtain highly focused SAR image of multiple moving targets. An emerging inference technique, which is known as variational Bayesian expectation-maximization, is applied to achieve an efficient Bayesian inference for the focused SAR moving target image. A remarkable advantage of the proposed algorithm is to provide a fully posterior distribution (Bayesian inference) for the SAR moving target image, rather than a poor point estimate used in conventional methods. Because of utilizing high-order statistical information, the error propagation problem is desirably ameliorated in an iterative manner. The perturbations, known as the multiplicative phase error and additive clutter and noise, are both well adjusted for further improving the image quality. Experimental results by using simulated spotlight-SAR data and real Gotcha data have demonstrated the superiority of the proposed algorithm over other reported ones.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2015.2498158</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2016-04, Vol.54 (4), p.2254-2267
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_7422105
source IEEE
subjects Algorithms
Bayes methods
Bayesian analysis
Ground moving target imaging (GMTIm)
Heuristic algorithms
Imaging
Lv's distribution (LVD)
parametric and dynamic sparse Bayesian learning (Para-Dyna-SBL)
Radar imaging
Synthetic aperture radar
synthetic aperture radar (SAR)
title SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAR%20Ground%20Moving%20Target%20Imaging%20Algorithm%20Based%20on%20Parametric%20and%20Dynamic%20Sparse%20Bayesian%20Learning&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Lei&rft.date=2016-04&rft.volume=54&rft.issue=4&rft.spage=2254&rft.epage=2267&rft.pages=2254-2267&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2498158&rft_dat=%3Cproquest_RIE%3E4045663691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786941376&rft_id=info:pmid/&rft_ieee_id=7422105&rfr_iscdi=true