Fair Resource Allocation for Data-Intensive Computing in the Cloud

To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2018-01, Vol.11 (1), p.20-33
Hauptverfasser: Tang, Shanjiang, Lee, Bu-Sung, He, Bingsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 20
container_title IEEE transactions on services computing
container_volume 11
creator Tang, Shanjiang
Lee, Bu-Sung
He, Bingsheng
description To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.
doi_str_mv 10.1109/TSC.2016.2531698
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7412778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412778</ieee_id><sourcerecordid>10_1109_TSC_2016_2531698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWKt3wUu-wNa8JJs_x7paLRQEreclzSYa2W5Ksiv47bulRTzNY5h5DD-EboHMAIi-X79XM0pAzGjJQGh1hiagmS6ASX7-775EVzl_EyKoUnqCHhYmJPzmchySdXjettGaPsQO-5jwo-lNsex61-Xw43AVt7uhD90nDh3uv0ajjUNzjS68abO7OekUfSye1tVLsXp9XlbzVWEZKfuCCSNpSYFKp4yiGprS0sY2AF5rXkpoqPAbLjhIwo01fkOF1uNMpoAAs2yKyPGvTTHn5Hy9S2Fr0m8NpD4wqEcG9YFBfWIwVu6OleCc-4tLPo6Qiu0BriNWdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fair Resource Allocation for Data-Intensive Computing in the Cloud</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Shanjiang ; Lee, Bu-Sung ; He, Bingsheng</creator><creatorcontrib>Tang, Shanjiang ; Lee, Bu-Sung ; He, Bingsheng</creatorcontrib><description>To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2016.2531698</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big data ; Cloud computing ; fair scheduler ; hadoop ; long-term resource fairness ; MapReduce ; Resource management ; Servers ; Sparks ; Storms ; Yarn</subject><ispartof>IEEE transactions on services computing, 2018-01, Vol.11 (1), p.20-33</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</citedby><cites>FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7412778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Shanjiang</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><creatorcontrib>He, Bingsheng</creatorcontrib><title>Fair Resource Allocation for Data-Intensive Computing in the Cloud</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.</description><subject>Big data</subject><subject>Cloud computing</subject><subject>fair scheduler</subject><subject>hadoop</subject><subject>long-term resource fairness</subject><subject>MapReduce</subject><subject>Resource management</subject><subject>Servers</subject><subject>Sparks</subject><subject>Storms</subject><subject>Yarn</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEUxIMoWKt3wUu-wNa8JJs_x7paLRQEreclzSYa2W5Ksiv47bulRTzNY5h5DD-EboHMAIi-X79XM0pAzGjJQGh1hiagmS6ASX7-775EVzl_EyKoUnqCHhYmJPzmchySdXjettGaPsQO-5jwo-lNsex61-Xw43AVt7uhD90nDh3uv0ajjUNzjS68abO7OekUfSye1tVLsXp9XlbzVWEZKfuCCSNpSYFKp4yiGprS0sY2AF5rXkpoqPAbLjhIwo01fkOF1uNMpoAAs2yKyPGvTTHn5Hy9S2Fr0m8NpD4wqEcG9YFBfWIwVu6OleCc-4tLPo6Qiu0BriNWdw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Tang, Shanjiang</creator><creator>Lee, Bu-Sung</creator><creator>He, Bingsheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201801</creationdate><title>Fair Resource Allocation for Data-Intensive Computing in the Cloud</title><author>Tang, Shanjiang ; Lee, Bu-Sung ; He, Bingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big data</topic><topic>Cloud computing</topic><topic>fair scheduler</topic><topic>hadoop</topic><topic>long-term resource fairness</topic><topic>MapReduce</topic><topic>Resource management</topic><topic>Servers</topic><topic>Sparks</topic><topic>Storms</topic><topic>Yarn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shanjiang</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><creatorcontrib>He, Bingsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Shanjiang</au><au>Lee, Bu-Sung</au><au>He, Bingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fair Resource Allocation for Data-Intensive Computing in the Cloud</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2018-01</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>20</spage><epage>33</epage><pages>20-33</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2016.2531698</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2018-01, Vol.11 (1), p.20-33
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_7412778
source IEEE Electronic Library (IEL)
subjects Big data
Cloud computing
fair scheduler
hadoop
long-term resource fairness
MapReduce
Resource management
Servers
Sparks
Storms
Yarn
title Fair Resource Allocation for Data-Intensive Computing in the Cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fair%20Resource%20Allocation%20for%20Data-Intensive%20Computing%20in%20the%20Cloud&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Tang,%20Shanjiang&rft.date=2018-01&rft.volume=11&rft.issue=1&rft.spage=20&rft.epage=33&rft.pages=20-33&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2016.2531698&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2016_2531698%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7412778&rfr_iscdi=true