Fair Resource Allocation for Data-Intensive Computing in the Cloud
To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2018-01, Vol.11 (1), p.20-33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | IEEE transactions on services computing |
container_volume | 11 |
creator | Tang, Shanjiang Lee, Bu-Sung He, Bingsheng |
description | To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN. |
doi_str_mv | 10.1109/TSC.2016.2531698 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7412778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412778</ieee_id><sourcerecordid>10_1109_TSC_2016_2531698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWKt3wUu-wNa8JJs_x7paLRQEreclzSYa2W5Ksiv47bulRTzNY5h5DD-EboHMAIi-X79XM0pAzGjJQGh1hiagmS6ASX7-775EVzl_EyKoUnqCHhYmJPzmchySdXjettGaPsQO-5jwo-lNsex61-Xw43AVt7uhD90nDh3uv0ajjUNzjS68abO7OekUfSye1tVLsXp9XlbzVWEZKfuCCSNpSYFKp4yiGprS0sY2AF5rXkpoqPAbLjhIwo01fkOF1uNMpoAAs2yKyPGvTTHn5Hy9S2Fr0m8NpD4wqEcG9YFBfWIwVu6OleCc-4tLPo6Qiu0BriNWdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fair Resource Allocation for Data-Intensive Computing in the Cloud</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Shanjiang ; Lee, Bu-Sung ; He, Bingsheng</creator><creatorcontrib>Tang, Shanjiang ; Lee, Bu-Sung ; He, Bingsheng</creatorcontrib><description>To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2016.2531698</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big data ; Cloud computing ; fair scheduler ; hadoop ; long-term resource fairness ; MapReduce ; Resource management ; Servers ; Sparks ; Storms ; Yarn</subject><ispartof>IEEE transactions on services computing, 2018-01, Vol.11 (1), p.20-33</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</citedby><cites>FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7412778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Shanjiang</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><creatorcontrib>He, Bingsheng</creatorcontrib><title>Fair Resource Allocation for Data-Intensive Computing in the Cloud</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.</description><subject>Big data</subject><subject>Cloud computing</subject><subject>fair scheduler</subject><subject>hadoop</subject><subject>long-term resource fairness</subject><subject>MapReduce</subject><subject>Resource management</subject><subject>Servers</subject><subject>Sparks</subject><subject>Storms</subject><subject>Yarn</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEUxIMoWKt3wUu-wNa8JJs_x7paLRQEreclzSYa2W5Ksiv47bulRTzNY5h5DD-EboHMAIi-X79XM0pAzGjJQGh1hiagmS6ASX7-775EVzl_EyKoUnqCHhYmJPzmchySdXjettGaPsQO-5jwo-lNsex61-Xw43AVt7uhD90nDh3uv0ajjUNzjS68abO7OekUfSye1tVLsXp9XlbzVWEZKfuCCSNpSYFKp4yiGprS0sY2AF5rXkpoqPAbLjhIwo01fkOF1uNMpoAAs2yKyPGvTTHn5Hy9S2Fr0m8NpD4wqEcG9YFBfWIwVu6OleCc-4tLPo6Qiu0BriNWdw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Tang, Shanjiang</creator><creator>Lee, Bu-Sung</creator><creator>He, Bingsheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201801</creationdate><title>Fair Resource Allocation for Data-Intensive Computing in the Cloud</title><author>Tang, Shanjiang ; Lee, Bu-Sung ; He, Bingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-36a7252127e8a8291d5c2dcd11f994571d26fb4641704acafb2699628381013c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big data</topic><topic>Cloud computing</topic><topic>fair scheduler</topic><topic>hadoop</topic><topic>long-term resource fairness</topic><topic>MapReduce</topic><topic>Resource management</topic><topic>Servers</topic><topic>Sparks</topic><topic>Storms</topic><topic>Yarn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shanjiang</creatorcontrib><creatorcontrib>Lee, Bu-Sung</creatorcontrib><creatorcontrib>He, Bingsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Shanjiang</au><au>Lee, Bu-Sung</au><au>He, Bingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fair Resource Allocation for Data-Intensive Computing in the Cloud</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2018-01</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>20</spage><epage>33</epage><pages>20-33</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>To address the computing challenge of `big data', a number of data-intensive computing frameworks (e.g., MapReduce, Dryad, Storm and Spark) have emerged and become popular. YARN is a de facto resource management platform that enables these frameworks running together in a shared system. However, we observe that, in cloud computing environment, the fair resource allocation policy implemented in YARN is not suitable because of its memoryless resource allocation fashion leading to violations of a number of good properties in shared computing systems. This paper attempts to address these problems for YARN. Both single-level and hierarchical resource allocations are considered. For single-level resource allocation, we propose a novel fair resource allocation mechanism called Long-Term Resource Fairness (LTRF)for such computing. For hierarchical resource allocation, we propose Hierarchical Long-Term Resource Fairness (H-LTRF) by extending LTRF. We show that both LTRF and H-LTRF can address these fairness problems of current resource allocation policy and are thus suitable for cloud computing. Finally, we have developed LTYARN by implementing LTRF and H-LTRF in YARN, and our experiments show that it leads to a better resource fairness than existing fair schedulers of YARN.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2016.2531698</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2018-01, Vol.11 (1), p.20-33 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_ieee_primary_7412778 |
source | IEEE Electronic Library (IEL) |
subjects | Big data Cloud computing fair scheduler hadoop long-term resource fairness MapReduce Resource management Servers Sparks Storms Yarn |
title | Fair Resource Allocation for Data-Intensive Computing in the Cloud |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fair%20Resource%20Allocation%20for%20Data-Intensive%20Computing%20in%20the%20Cloud&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Tang,%20Shanjiang&rft.date=2018-01&rft.volume=11&rft.issue=1&rft.spage=20&rft.epage=33&rft.pages=20-33&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2016.2531698&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2016_2531698%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7412778&rfr_iscdi=true |