Data Aggregation and Principal Component Analysis in WSNs

Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, princ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2016-06, Vol.15 (6), p.3908-3919
Hauptverfasser: Morell, Antoni, Correa, Alejandro, Barcelo, Marc, Lopez Vicario, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3919
container_issue 6
container_start_page 3908
container_title IEEE transactions on wireless communications
container_volume 15
creator Morell, Antoni
Correa, Alejandro
Barcelo, Marc
Lopez Vicario, Jose
description Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).
doi_str_mv 10.1109/TWC.2016.2531041
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7410064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7410064</ieee_id><sourcerecordid>1825496406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep9847yxKfUFSw0mWYJpMyJZ3EmXTRf29CxYWrexbfOVw-Qq4RZoiQ3S9X-YwCyhkVDIHjCZmgEDqllOvTMTOZIlXynFzEuAVAJYWYkOzB9CaZbzbBbkzvWp8YXyUfwfnSdaZJ8nbXtd76Ppl70xyii4nzyerzLV6Ss9o00V793in5enpc5i_p4v35NZ8v0pJR3qdUQWUVzzK0DBlUkmngqqRVxayGuq6qtTCm1mAoL7kwsAZdKqql4hqHGpuSu-NuF9rvvY19sXOxtE1jvG33sUBNBc8kBzmgt__QbbsPw98DpTKRSZRyHIQjVYY2xmDrogtuZ8KhQChGl8XgshhdFr8uh8rNseKstX-44gggOfsBNjZs4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795961669</pqid></control><display><type>article</type><title>Data Aggregation and Principal Component Analysis in WSNs</title><source>IEEE Electronic Library (IEL)</source><creator>Morell, Antoni ; Correa, Alejandro ; Barcelo, Marc ; Lopez Vicario, Jose</creator><creatorcontrib>Morell, Antoni ; Correa, Alejandro ; Barcelo, Marc ; Lopez Vicario, Jose</creatorcontrib><description>Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2016.2531041</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>approximate subspace representation ; Computer simulation ; Correlation ; Data Aggregation ; Data management ; Energy consumption ; Mathematical models ; Monitoring ; Networks ; PCA ; Principal component analysis ; Remote sensors ; Strategy ; Wireless communication ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2016-06, Vol.15 (6), p.3908-3919</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</citedby><cites>FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</cites><orcidid>0000-0003-2249-8594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7410064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7410064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morell, Antoni</creatorcontrib><creatorcontrib>Correa, Alejandro</creatorcontrib><creatorcontrib>Barcelo, Marc</creatorcontrib><creatorcontrib>Lopez Vicario, Jose</creatorcontrib><title>Data Aggregation and Principal Component Analysis in WSNs</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).</description><subject>approximate subspace representation</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Data Aggregation</subject><subject>Data management</subject><subject>Energy consumption</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Networks</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Remote sensors</subject><subject>Strategy</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep9847yxKfUFSw0mWYJpMyJZ3EmXTRf29CxYWrexbfOVw-Qq4RZoiQ3S9X-YwCyhkVDIHjCZmgEDqllOvTMTOZIlXynFzEuAVAJYWYkOzB9CaZbzbBbkzvWp8YXyUfwfnSdaZJ8nbXtd76Ppl70xyii4nzyerzLV6Ss9o00V793in5enpc5i_p4v35NZ8v0pJR3qdUQWUVzzK0DBlUkmngqqRVxayGuq6qtTCm1mAoL7kwsAZdKqql4hqHGpuSu-NuF9rvvY19sXOxtE1jvG33sUBNBc8kBzmgt__QbbsPw98DpTKRSZRyHIQjVYY2xmDrogtuZ8KhQChGl8XgshhdFr8uh8rNseKstX-44gggOfsBNjZs4Q</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Morell, Antoni</creator><creator>Correa, Alejandro</creator><creator>Barcelo, Marc</creator><creator>Lopez Vicario, Jose</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-2249-8594</orcidid></search><sort><creationdate>201606</creationdate><title>Data Aggregation and Principal Component Analysis in WSNs</title><author>Morell, Antoni ; Correa, Alejandro ; Barcelo, Marc ; Lopez Vicario, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>approximate subspace representation</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Data Aggregation</topic><topic>Data management</topic><topic>Energy consumption</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Networks</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Remote sensors</topic><topic>Strategy</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morell, Antoni</creatorcontrib><creatorcontrib>Correa, Alejandro</creatorcontrib><creatorcontrib>Barcelo, Marc</creatorcontrib><creatorcontrib>Lopez Vicario, Jose</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morell, Antoni</au><au>Correa, Alejandro</au><au>Barcelo, Marc</au><au>Lopez Vicario, Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Aggregation and Principal Component Analysis in WSNs</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-06</date><risdate>2016</risdate><volume>15</volume><issue>6</issue><spage>3908</spage><epage>3919</epage><pages>3908-3919</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2016.2531041</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2249-8594</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2016-06, Vol.15 (6), p.3908-3919
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_7410064
source IEEE Electronic Library (IEL)
subjects approximate subspace representation
Computer simulation
Correlation
Data Aggregation
Data management
Energy consumption
Mathematical models
Monitoring
Networks
PCA
Principal component analysis
Remote sensors
Strategy
Wireless communication
Wireless networks
Wireless sensor networks
title Data Aggregation and Principal Component Analysis in WSNs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Aggregation%20and%20Principal%20Component%20Analysis%20in%20WSNs&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Morell,%20Antoni&rft.date=2016-06&rft.volume=15&rft.issue=6&rft.spage=3908&rft.epage=3919&rft.pages=3908-3919&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2016.2531041&rft_dat=%3Cproquest_RIE%3E1825496406%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795961669&rft_id=info:pmid/&rft_ieee_id=7410064&rfr_iscdi=true