Data Aggregation and Principal Component Analysis in WSNs
Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, princ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2016-06, Vol.15 (6), p.3908-3919 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3919 |
---|---|
container_issue | 6 |
container_start_page | 3908 |
container_title | IEEE transactions on wireless communications |
container_volume | 15 |
creator | Morell, Antoni Correa, Alejandro Barcelo, Marc Lopez Vicario, Jose |
description | Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations). |
doi_str_mv | 10.1109/TWC.2016.2531041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7410064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7410064</ieee_id><sourcerecordid>1825496406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep9847yxKfUFSw0mWYJpMyJZ3EmXTRf29CxYWrexbfOVw-Qq4RZoiQ3S9X-YwCyhkVDIHjCZmgEDqllOvTMTOZIlXynFzEuAVAJYWYkOzB9CaZbzbBbkzvWp8YXyUfwfnSdaZJ8nbXtd76Ppl70xyii4nzyerzLV6Ss9o00V793in5enpc5i_p4v35NZ8v0pJR3qdUQWUVzzK0DBlUkmngqqRVxayGuq6qtTCm1mAoL7kwsAZdKqql4hqHGpuSu-NuF9rvvY19sXOxtE1jvG33sUBNBc8kBzmgt__QbbsPw98DpTKRSZRyHIQjVYY2xmDrogtuZ8KhQChGl8XgshhdFr8uh8rNseKstX-44gggOfsBNjZs4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795961669</pqid></control><display><type>article</type><title>Data Aggregation and Principal Component Analysis in WSNs</title><source>IEEE Electronic Library (IEL)</source><creator>Morell, Antoni ; Correa, Alejandro ; Barcelo, Marc ; Lopez Vicario, Jose</creator><creatorcontrib>Morell, Antoni ; Correa, Alejandro ; Barcelo, Marc ; Lopez Vicario, Jose</creatorcontrib><description>Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2016.2531041</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>approximate subspace representation ; Computer simulation ; Correlation ; Data Aggregation ; Data management ; Energy consumption ; Mathematical models ; Monitoring ; Networks ; PCA ; Principal component analysis ; Remote sensors ; Strategy ; Wireless communication ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE transactions on wireless communications, 2016-06, Vol.15 (6), p.3908-3919</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</citedby><cites>FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</cites><orcidid>0000-0003-2249-8594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7410064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7410064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morell, Antoni</creatorcontrib><creatorcontrib>Correa, Alejandro</creatorcontrib><creatorcontrib>Barcelo, Marc</creatorcontrib><creatorcontrib>Lopez Vicario, Jose</creatorcontrib><title>Data Aggregation and Principal Component Analysis in WSNs</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).</description><subject>approximate subspace representation</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Data Aggregation</subject><subject>Data management</subject><subject>Energy consumption</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Networks</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Remote sensors</subject><subject>Strategy</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFb3gpuAGzep9847yxKfUFSw0mWYJpMyJZ3EmXTRf29CxYWrexbfOVw-Qq4RZoiQ3S9X-YwCyhkVDIHjCZmgEDqllOvTMTOZIlXynFzEuAVAJYWYkOzB9CaZbzbBbkzvWp8YXyUfwfnSdaZJ8nbXtd76Ppl70xyii4nzyerzLV6Ss9o00V793in5enpc5i_p4v35NZ8v0pJR3qdUQWUVzzK0DBlUkmngqqRVxayGuq6qtTCm1mAoL7kwsAZdKqql4hqHGpuSu-NuF9rvvY19sXOxtE1jvG33sUBNBc8kBzmgt__QbbsPw98DpTKRSZRyHIQjVYY2xmDrogtuZ8KhQChGl8XgshhdFr8uh8rNseKstX-44gggOfsBNjZs4Q</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Morell, Antoni</creator><creator>Correa, Alejandro</creator><creator>Barcelo, Marc</creator><creator>Lopez Vicario, Jose</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-2249-8594</orcidid></search><sort><creationdate>201606</creationdate><title>Data Aggregation and Principal Component Analysis in WSNs</title><author>Morell, Antoni ; Correa, Alejandro ; Barcelo, Marc ; Lopez Vicario, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-270de74991e3130d638047c2dd3e80ffddb5aaf80a24c45a0b08c728674814993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>approximate subspace representation</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Data Aggregation</topic><topic>Data management</topic><topic>Energy consumption</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Networks</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Remote sensors</topic><topic>Strategy</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morell, Antoni</creatorcontrib><creatorcontrib>Correa, Alejandro</creatorcontrib><creatorcontrib>Barcelo, Marc</creatorcontrib><creatorcontrib>Lopez Vicario, Jose</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morell, Antoni</au><au>Correa, Alejandro</au><au>Barcelo, Marc</au><au>Lopez Vicario, Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Aggregation and Principal Component Analysis in WSNs</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-06</date><risdate>2016</risdate><volume>15</volume><issue>6</issue><spage>3908</spage><epage>3919</epage><pages>3908-3919</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Data aggregation plays an important role in wireless sensor networks (WSNs) as far as it reduces power consumption and boosts the scalability of the network, especially in topologies that are prone to bottlenecks (e.g. cluster-trees). Existing works in the literature use clustering approaches, principal component analysis (PCA) and/or compressed sensing (CS) strategies. Our contribution is aligned with PCA and explores whether a projection basis that is not the eigenvectors basis may be valid to sustain a normalized mean squared error (NMSE) threshold in signal reconstruction and reduce the energy consumption. We derivate first the NSME achieved with the new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to propose a new subspace-based data aggregation method. The proposed solution reduces transmissions among the sink and one or more data aggregation nodes (DANs) in the network. In our simulations, we consider without loss of generality a single cluster network and results show that the new technique succeeds in satisfying the NMSE requirement and gets close in terms of energy consumption to the best possible solution employing subspace representations. Additionally, the proposed method alleviates the computational load with respect to an eigenvector-based strategy (by a factor of six in our simulations).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2016.2531041</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2249-8594</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2016-06, Vol.15 (6), p.3908-3919 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_7410064 |
source | IEEE Electronic Library (IEL) |
subjects | approximate subspace representation Computer simulation Correlation Data Aggregation Data management Energy consumption Mathematical models Monitoring Networks PCA Principal component analysis Remote sensors Strategy Wireless communication Wireless networks Wireless sensor networks |
title | Data Aggregation and Principal Component Analysis in WSNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Aggregation%20and%20Principal%20Component%20Analysis%20in%20WSNs&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Morell,%20Antoni&rft.date=2016-06&rft.volume=15&rft.issue=6&rft.spage=3908&rft.epage=3919&rft.pages=3908-3919&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2016.2531041&rft_dat=%3Cproquest_RIE%3E1825496406%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795961669&rft_id=info:pmid/&rft_ieee_id=7410064&rfr_iscdi=true |