Compressive Sensing Reconstruction of Correlated Images Using Joint Regularization

This letter proposes a novel compressive sensing reconstruction method for correlated images by using joint regularization, where a compensation-based adaptive total variation (CATV) regularization and a multi-image nonlocal low-rank (MNLR) regularization are included. In CATV, local weights are ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-04, Vol.23 (4), p.449-453
Hauptverfasser: Kan Chang, Ding, Pak Lun Kevin, Baoxin Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 4
container_start_page 449
container_title IEEE signal processing letters
container_volume 23
creator Kan Chang
Ding, Pak Lun Kevin
Baoxin Li
description This letter proposes a novel compressive sensing reconstruction method for correlated images by using joint regularization, where a compensation-based adaptive total variation (CATV) regularization and a multi-image nonlocal low-rank (MNLR) regularization are included. In CATV, local weights are assigned to the residual values in the gradient domain so as to constrain the regularization strength at each pixel. In MNLR, the search of similar patches goes across different images so that both self-similarity and inter-image similarity are explored. Afterward, an efficient algorithm is proposed to solve the joint formulation, using a Split-Bregman-based technique. The effectiveness of the proposed approach is demonstrated with experiments on both multiview images and video sequences.
doi_str_mv 10.1109/LSP.2016.2527680
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7403894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7403894</ieee_id><sourcerecordid>1816067711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-e235012d6508cf6420dff8cbc98e63d8b34608cf1858622e97ad3a84d2faf593</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKd3wUvBi5fOl6RN06MUf0wGyjbPIUtfRkfbzKQV9K-3deLB03vwPt_Hlw8hlxRmlEJ-u1i9zhhQMWMpy4SEIzKhaSpjxgU9HnbIIM5zkKfkLIQdAEgq0wlZFq7Zewyh-sBohW2o2m20ROPa0PnedJVrI2ejwnmPte6wjOaN3mKI3n7IZ1e13cBv-1r76kuP_Dk5sboOePE7p2T9cL8unuLFy-O8uFvEJuGsi5HxFCgrRQrSWJEwKK2VZmNyiYKXcsMTMV6GmlIwhnmmS65lUjKrbZrzKbk5vN17995j6FRTBYN1rVt0fVBUUgEiyygd0Ot_6M71vh3KKZrJjMlEghgoOFDGuxA8WrX3VaP9p6KgRsdqcKxGx-rX8RC5OkQqRPzDswS4zBP-DRfKd9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787284806</pqid></control><display><type>article</type><title>Compressive Sensing Reconstruction of Correlated Images Using Joint Regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Kan Chang ; Ding, Pak Lun Kevin ; Baoxin Li</creator><creatorcontrib>Kan Chang ; Ding, Pak Lun Kevin ; Baoxin Li</creatorcontrib><description>This letter proposes a novel compressive sensing reconstruction method for correlated images by using joint regularization, where a compensation-based adaptive total variation (CATV) regularization and a multi-image nonlocal low-rank (MNLR) regularization are included. In CATV, local weights are assigned to the residual values in the gradient domain so as to constrain the regularization strength at each pixel. In MNLR, the search of similar patches goes across different images so that both self-similarity and inter-image similarity are explored. Afterward, an efficient algorithm is proposed to solve the joint formulation, using a Split-Bregman-based technique. The effectiveness of the proposed approach is demonstrated with experiments on both multiview images and video sequences.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2016.2527680</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressed sensing ; Compressive sensing ; Correlation ; Detection ; Image reconstruction ; Minimization ; motion estimation/disparity estimation (ME/DE) ; nonlocal low-rank regularization (NLR) ; Reconstruction ; Regularization ; Reliability ; Signal processing algorithms ; Similarity ; total variation ; Video sequences</subject><ispartof>IEEE signal processing letters, 2016-04, Vol.23 (4), p.449-453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-e235012d6508cf6420dff8cbc98e63d8b34608cf1858622e97ad3a84d2faf593</citedby><cites>FETCH-LOGICAL-c432t-e235012d6508cf6420dff8cbc98e63d8b34608cf1858622e97ad3a84d2faf593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7403894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7403894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kan Chang</creatorcontrib><creatorcontrib>Ding, Pak Lun Kevin</creatorcontrib><creatorcontrib>Baoxin Li</creatorcontrib><title>Compressive Sensing Reconstruction of Correlated Images Using Joint Regularization</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter proposes a novel compressive sensing reconstruction method for correlated images by using joint regularization, where a compensation-based adaptive total variation (CATV) regularization and a multi-image nonlocal low-rank (MNLR) regularization are included. In CATV, local weights are assigned to the residual values in the gradient domain so as to constrain the regularization strength at each pixel. In MNLR, the search of similar patches goes across different images so that both self-similarity and inter-image similarity are explored. Afterward, an efficient algorithm is proposed to solve the joint formulation, using a Split-Bregman-based technique. The effectiveness of the proposed approach is demonstrated with experiments on both multiview images and video sequences.</description><subject>Algorithms</subject><subject>Compressed sensing</subject><subject>Compressive sensing</subject><subject>Correlation</subject><subject>Detection</subject><subject>Image reconstruction</subject><subject>Minimization</subject><subject>motion estimation/disparity estimation (ME/DE)</subject><subject>nonlocal low-rank regularization (NLR)</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>Reliability</subject><subject>Signal processing algorithms</subject><subject>Similarity</subject><subject>total variation</subject><subject>Video sequences</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoOKd3wUvBi5fOl6RN06MUf0wGyjbPIUtfRkfbzKQV9K-3deLB03vwPt_Hlw8hlxRmlEJ-u1i9zhhQMWMpy4SEIzKhaSpjxgU9HnbIIM5zkKfkLIQdAEgq0wlZFq7Zewyh-sBohW2o2m20ROPa0PnedJVrI2ejwnmPte6wjOaN3mKI3n7IZ1e13cBv-1r76kuP_Dk5sboOePE7p2T9cL8unuLFy-O8uFvEJuGsi5HxFCgrRQrSWJEwKK2VZmNyiYKXcsMTMV6GmlIwhnmmS65lUjKrbZrzKbk5vN17995j6FRTBYN1rVt0fVBUUgEiyygd0Ot_6M71vh3KKZrJjMlEghgoOFDGuxA8WrX3VaP9p6KgRsdqcKxGx-rX8RC5OkQqRPzDswS4zBP-DRfKd9M</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Kan Chang</creator><creator>Ding, Pak Lun Kevin</creator><creator>Baoxin Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201604</creationdate><title>Compressive Sensing Reconstruction of Correlated Images Using Joint Regularization</title><author>Kan Chang ; Ding, Pak Lun Kevin ; Baoxin Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-e235012d6508cf6420dff8cbc98e63d8b34608cf1858622e97ad3a84d2faf593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Compressed sensing</topic><topic>Compressive sensing</topic><topic>Correlation</topic><topic>Detection</topic><topic>Image reconstruction</topic><topic>Minimization</topic><topic>motion estimation/disparity estimation (ME/DE)</topic><topic>nonlocal low-rank regularization (NLR)</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>Reliability</topic><topic>Signal processing algorithms</topic><topic>Similarity</topic><topic>total variation</topic><topic>Video sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan Chang</creatorcontrib><creatorcontrib>Ding, Pak Lun Kevin</creatorcontrib><creatorcontrib>Baoxin Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kan Chang</au><au>Ding, Pak Lun Kevin</au><au>Baoxin Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive Sensing Reconstruction of Correlated Images Using Joint Regularization</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-04</date><risdate>2016</risdate><volume>23</volume><issue>4</issue><spage>449</spage><epage>453</epage><pages>449-453</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter proposes a novel compressive sensing reconstruction method for correlated images by using joint regularization, where a compensation-based adaptive total variation (CATV) regularization and a multi-image nonlocal low-rank (MNLR) regularization are included. In CATV, local weights are assigned to the residual values in the gradient domain so as to constrain the regularization strength at each pixel. In MNLR, the search of similar patches goes across different images so that both self-similarity and inter-image similarity are explored. Afterward, an efficient algorithm is proposed to solve the joint formulation, using a Split-Bregman-based technique. The effectiveness of the proposed approach is demonstrated with experiments on both multiview images and video sequences.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2016.2527680</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2016-04, Vol.23 (4), p.449-453
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_7403894
source IEEE Electronic Library (IEL)
subjects Algorithms
Compressed sensing
Compressive sensing
Correlation
Detection
Image reconstruction
Minimization
motion estimation/disparity estimation (ME/DE)
nonlocal low-rank regularization (NLR)
Reconstruction
Regularization
Reliability
Signal processing algorithms
Similarity
total variation
Video sequences
title Compressive Sensing Reconstruction of Correlated Images Using Joint Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20Sensing%20Reconstruction%20of%20Correlated%20Images%20Using%20Joint%20Regularization&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Kan%20Chang&rft.date=2016-04&rft.volume=23&rft.issue=4&rft.spage=449&rft.epage=453&rft.pages=449-453&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2016.2527680&rft_dat=%3Cproquest_RIE%3E1816067711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787284806&rft_id=info:pmid/&rft_ieee_id=7403894&rfr_iscdi=true