Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives

This paper presents the challenges that researchers must overcome in traffic light recognition (TLR) research and provides an overview of ongoing work. The aim is to elucidate which areas have been thoroughly researched and which have not, thereby uncovering opportunities for further improvement. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2016-07, Vol.17 (7), p.1800-1815
Hauptverfasser: Jensen, Morten Borno, Philipsen, Mark Philip, Mogelmose, Andreas, Moeslund, Thomas Baltzer, Trivedi, Mohan Manubhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1815
container_issue 7
container_start_page 1800
container_title IEEE transactions on intelligent transportation systems
container_volume 17
creator Jensen, Morten Borno
Philipsen, Mark Philip
Mogelmose, Andreas
Moeslund, Thomas Baltzer
Trivedi, Mohan Manubhai
description This paper presents the challenges that researchers must overcome in traffic light recognition (TLR) research and provides an overview of ongoing work. The aim is to elucidate which areas have been thoroughly researched and which have not, thereby uncovering opportunities for further improvement. An overview of the applied methods and noteworthy contributions from a wide range of recent papers is presented, along with the corresponding evaluation results. The evaluation of TLR systems is studied and discussed in depth, and we propose a common evaluation procedure, which will strengthen evaluation and ease comparison. To provide a shared basis for comparing TLR systems, we publish an extensive public data set based on footage from U.S. roads. The data set contains annotated video sequences, captured under varying light and weather conditions using a stereo camera. The data set, with its variety, size, and continuous sequences, should challenge current and future TLR systems.
doi_str_mv 10.1109/TITS.2015.2509509
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7398055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7398055</ieee_id><sourcerecordid>1825542535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-f099f9a1ea2d1adf9ceb874fbac45580977c7175179c2ac7bc79397109a797653</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYMoWKs_QLwEvHjo1kx202y8SbFaWFBo9RrSNKmp7aYmu4X-e7NUPAgDMwzfPN48hK6BDAGIuJ9P57MhJcCGlBGR6gT1gLEyIwRGp91Mi0wQRs7RRYzrtC0YQA9NPlx0vsbWB1x5_-XqFVYNngdlrdO4cqvPJj7gaYytiQM8a8PeHAZY1Uv8ZkLcGd24vYmX6MyqTTRXv72P3idP8_FLVr0-T8ePVaaLMm8yS4SwQoFRdAlqaYU2i5IXdqF0kcwSwbnmwBlwoanSfKG5yAVPDyou-IjlfXR31N0F_50cNXLrojabjaqNb6OEkjJWUJZ36O0_dO3bUCd3MskLURJOaaLgSOngYwzGyl1wWxUOEojskpVdsrJLVv4mm25ujjfOGPPH8zxJMpb_AFKncts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799980722</pqid></control><display><type>article</type><title>Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives</title><source>IEEE Electronic Library (IEL)</source><creator>Jensen, Morten Borno ; Philipsen, Mark Philip ; Mogelmose, Andreas ; Moeslund, Thomas Baltzer ; Trivedi, Mohan Manubhai</creator><creatorcontrib>Jensen, Morten Borno ; Philipsen, Mark Philip ; Mogelmose, Andreas ; Moeslund, Thomas Baltzer ; Trivedi, Mohan Manubhai</creatorcontrib><description>This paper presents the challenges that researchers must overcome in traffic light recognition (TLR) research and provides an overview of ongoing work. The aim is to elucidate which areas have been thoroughly researched and which have not, thereby uncovering opportunities for further improvement. An overview of the applied methods and noteworthy contributions from a wide range of recent papers is presented, along with the corresponding evaluation results. The evaluation of TLR systems is studied and discussed in depth, and we propose a common evaluation procedure, which will strengthen evaluation and ease comparison. To provide a shared basis for comparing TLR systems, we publish an extensive public data set based on footage from U.S. roads. The data set contains annotated video sequences, captured under varying light and weather conditions using a stereo camera. The data set, with its variety, size, and continuous sequences, should challenge current and future TLR systems.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2015.2509509</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>active safety ; Cameras ; Color ; Computer vision ; Datasets ; driver assistance systems ; intelligent transportation system ; Intelligent transportation systems ; machine learning ; object detection ; Recognition ; Roads ; Shape ; Traffic light recognition ; Traffic signals ; Vehicles ; Video data ; Vision ; Weather conditions</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-07, Vol.17 (7), p.1800-1815</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-f099f9a1ea2d1adf9ceb874fbac45580977c7175179c2ac7bc79397109a797653</citedby><cites>FETCH-LOGICAL-c483t-f099f9a1ea2d1adf9ceb874fbac45580977c7175179c2ac7bc79397109a797653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7398055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7398055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jensen, Morten Borno</creatorcontrib><creatorcontrib>Philipsen, Mark Philip</creatorcontrib><creatorcontrib>Mogelmose, Andreas</creatorcontrib><creatorcontrib>Moeslund, Thomas Baltzer</creatorcontrib><creatorcontrib>Trivedi, Mohan Manubhai</creatorcontrib><title>Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper presents the challenges that researchers must overcome in traffic light recognition (TLR) research and provides an overview of ongoing work. The aim is to elucidate which areas have been thoroughly researched and which have not, thereby uncovering opportunities for further improvement. An overview of the applied methods and noteworthy contributions from a wide range of recent papers is presented, along with the corresponding evaluation results. The evaluation of TLR systems is studied and discussed in depth, and we propose a common evaluation procedure, which will strengthen evaluation and ease comparison. To provide a shared basis for comparing TLR systems, we publish an extensive public data set based on footage from U.S. roads. The data set contains annotated video sequences, captured under varying light and weather conditions using a stereo camera. The data set, with its variety, size, and continuous sequences, should challenge current and future TLR systems.</description><subject>active safety</subject><subject>Cameras</subject><subject>Color</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>driver assistance systems</subject><subject>intelligent transportation system</subject><subject>Intelligent transportation systems</subject><subject>machine learning</subject><subject>object detection</subject><subject>Recognition</subject><subject>Roads</subject><subject>Shape</subject><subject>Traffic light recognition</subject><subject>Traffic signals</subject><subject>Vehicles</subject><subject>Video data</subject><subject>Vision</subject><subject>Weather conditions</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQhYMoWKs_QLwEvHjo1kx202y8SbFaWFBo9RrSNKmp7aYmu4X-e7NUPAgDMwzfPN48hK6BDAGIuJ9P57MhJcCGlBGR6gT1gLEyIwRGp91Mi0wQRs7RRYzrtC0YQA9NPlx0vsbWB1x5_-XqFVYNngdlrdO4cqvPJj7gaYytiQM8a8PeHAZY1Uv8ZkLcGd24vYmX6MyqTTRXv72P3idP8_FLVr0-T8ePVaaLMm8yS4SwQoFRdAlqaYU2i5IXdqF0kcwSwbnmwBlwoanSfKG5yAVPDyou-IjlfXR31N0F_50cNXLrojabjaqNb6OEkjJWUJZ36O0_dO3bUCd3MskLURJOaaLgSOngYwzGyl1wWxUOEojskpVdsrJLVv4mm25ujjfOGPPH8zxJMpb_AFKncts</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Jensen, Morten Borno</creator><creator>Philipsen, Mark Philip</creator><creator>Mogelmose, Andreas</creator><creator>Moeslund, Thomas Baltzer</creator><creator>Trivedi, Mohan Manubhai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160701</creationdate><title>Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives</title><author>Jensen, Morten Borno ; Philipsen, Mark Philip ; Mogelmose, Andreas ; Moeslund, Thomas Baltzer ; Trivedi, Mohan Manubhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-f099f9a1ea2d1adf9ceb874fbac45580977c7175179c2ac7bc79397109a797653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>active safety</topic><topic>Cameras</topic><topic>Color</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>driver assistance systems</topic><topic>intelligent transportation system</topic><topic>Intelligent transportation systems</topic><topic>machine learning</topic><topic>object detection</topic><topic>Recognition</topic><topic>Roads</topic><topic>Shape</topic><topic>Traffic light recognition</topic><topic>Traffic signals</topic><topic>Vehicles</topic><topic>Video data</topic><topic>Vision</topic><topic>Weather conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Morten Borno</creatorcontrib><creatorcontrib>Philipsen, Mark Philip</creatorcontrib><creatorcontrib>Mogelmose, Andreas</creatorcontrib><creatorcontrib>Moeslund, Thomas Baltzer</creatorcontrib><creatorcontrib>Trivedi, Mohan Manubhai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, Morten Borno</au><au>Philipsen, Mark Philip</au><au>Mogelmose, Andreas</au><au>Moeslund, Thomas Baltzer</au><au>Trivedi, Mohan Manubhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>17</volume><issue>7</issue><spage>1800</spage><epage>1815</epage><pages>1800-1815</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper presents the challenges that researchers must overcome in traffic light recognition (TLR) research and provides an overview of ongoing work. The aim is to elucidate which areas have been thoroughly researched and which have not, thereby uncovering opportunities for further improvement. An overview of the applied methods and noteworthy contributions from a wide range of recent papers is presented, along with the corresponding evaluation results. The evaluation of TLR systems is studied and discussed in depth, and we propose a common evaluation procedure, which will strengthen evaluation and ease comparison. To provide a shared basis for comparing TLR systems, we publish an extensive public data set based on footage from U.S. roads. The data set contains annotated video sequences, captured under varying light and weather conditions using a stereo camera. The data set, with its variety, size, and continuous sequences, should challenge current and future TLR systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2015.2509509</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2016-07, Vol.17 (7), p.1800-1815
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_7398055
source IEEE Electronic Library (IEL)
subjects active safety
Cameras
Color
Computer vision
Datasets
driver assistance systems
intelligent transportation system
Intelligent transportation systems
machine learning
object detection
Recognition
Roads
Shape
Traffic light recognition
Traffic signals
Vehicles
Video data
Vision
Weather conditions
title Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision%20for%20Looking%20at%20Traffic%20Lights:%20Issues,%20Survey,%20and%20Perspectives&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Jensen,%20Morten%20Borno&rft.date=2016-07-01&rft.volume=17&rft.issue=7&rft.spage=1800&rft.epage=1815&rft.pages=1800-1815&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2015.2509509&rft_dat=%3Cproquest_RIE%3E1825542535%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799980722&rft_id=info:pmid/&rft_ieee_id=7398055&rfr_iscdi=true